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SQformer: Spectral-Query transformer for
hyperspectral image arbitrary-scale super-resolution

Shuguo Jiang, Nanying Li, Meng Xu, Shuyu Zhang, Sen Jia

Abstract—Super-resolution is vital for the quality improvement
of hyperspectral images (HSIs) under the spatial and spectral
resolution trade-off. However, deep learning HSI super-resolution
approaches typically adopt the “one model, one scale” scheme
that is inefficient in training and storing. This is difficult in
maximizing orbit equipment performance and aligning multiple
spatial resolution data in remote sensing. So, this paper intends to
address HSI arbitrary-scale super-resolution, enabling the scaling
of HSIs to arbitrary sizes using a single model. To do this
end, we treat HSI arbitrary-scale super-resolution as a retrieval
problem. It conceptualizes the HSI as a dictionary of pixel-wise
tokens with spatial-spectral features, position information, and
scale information. Its objective is to employ a set of initialized
tokens related to the high-resolution (HR) HSI as queries to
retrieve matched spectral features from low-resolution (LR) one,
which is so-called token-based query-to-spectrum. Since these
query tokens can be constructed flexibly (e.g., through random
initialization), we can generate a desired number of them to
reconstruct our HR HSI, thus achieving arbitrary-scale super-
resolution. This process considers not only position information
but also spectral features so that it can decrease spectral distor-
tion. With the above idea, we developed a HSI arbitrary-scale
super-resolution method, dubbed as Spectral-Query transformer
(SQformer). Specifically, it begins by converting the LR HSI into
a dictionary of LR tokens and then constructs a desired number
of HR tokens. To enable flexible token construction, we design
an implicit spectral token (particularly a learnable vector) and
replicate it αH × αW times to form the HR tokens. Next, the
HR and LR tokens are passed into a transformer decoder to
find the most matched spectral response for the former by soft-
weighting the LR tokens. Finally, the HR tokens are spatially
rearranged in order, forming a HR HSI. Extensive experiments
have demonstrated its effectiveness on remote sensing data. The
code will be released at: https://github.com/ShuGuoJ/SQformer.git.

Index Terms—Hyperspectral image (HSI), arbitrary-scale
super-resolution.
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Fig. 1. Differences between naive hyperspectral image super-resolution
and hyperspectral image arbitrary-scale super-resolution in deep learning.
Technically, naive deep learning hyperspectral image super-resolution always
regards image magnification at different scale factors as single sub-tasks
and trains specific models for them. This scheme is very inefficient in
training and storing. Moreover, it is unable to perform non-integer super-
resolution, hard to maximize the performance of various terminals. To solve
the problems, hyperspectral image arbitrary-scale super-resolution aims to
treat magnification at all scales as a task and use only one model to do it.

HYPERSPECTRAL images (HSIs) [1]–[3], which contain
the unique spectral curve of ground objects, have been

a vital tool in earth observation [4]–[6], environmental mon-
itoring [7], and so on. However, due to limitations imposed
by the lowest signal-to-noise ratio during imaging, it already
needs to compromise its spatial resolution in favor of achieving
nanoscale spectral resolution. Consequent low spatial resolu-
tion usually causes mixed pixels, indistinguishable boundaries,
and blurred textures, inevitably influencing related applications
such as change detection [8], object recognition [9], scene
interpretation [10], and classification [11], [12]. Furthermore,
the low resolution (LR) of HSIs also has posed a challenge
for spatially fusing them with other high-resolution (HR)
modalities, such as RGB and multi-spectral images in remote
sensing multi-modalities learning. Unfortunately, it is difficult
to break the trade-off between spatial and spectral resolution
in HSIs solely relying on hardware improvements. Therefore
it is desired to enhance its spatial resolution from the aspect of
algorithms in order to provide high-quality data and accurate
spatial alignment for downstream tasks.

Single hyperspectral image super-resolution [13]–[15] has
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Fig. 2. Spectral distortion. Existing arbitrary-scale super-resolution methods
for RGB images often encounter significant spectral distortion issues when
upscaling the LR HSI by a factor of 4.

achieved great success over the last few decades, particularly
with the widespread adoption and dominance of deep learning
in image processing [16]–[19]. It is a feasible, efficient, and
straightforward way to reconstruct HR HSIs from their LR
counterparts [20]–[24]. Current methods typically adopt “one
model, one scale” scheme with either a transposed convolu-
tional layer [25] or a pixel shuffle layer [26] to learn LR-to-
HR mapping for super-resolution, shown in Figure 1. These
upsampling layers always require predefining an upsampling
scale for parameter construction, thereby coupling spatial ex-
pansion with high-resolution feature learning for images. As a
result, once models complete training, they can only upsample
images to the predetermined scale factor. But, this inflexible
approach is unable to freely scale up images in inference so
that it is hard to meet the diverse requirements of downstream
tasks. Moreover, training a single model for different scales
is infeasible since there is only limited registered data and
memory available to train and store models with millions of
parameters in practice.

One straightforward solution to achieve HSI arbitrary-scale
super-resolution is transferring RGB arbitrary-scale super-
resolution methods [27]–[29] proposed recently into this field.
These approaches mainly employed the implicit neural rep-
resentation to learn an image function with respect to spatial
coordinates. Subsequently, they utilize pixel-wise coordinates
as independent variables to calculate pixel values for HR
images. Owing to the continuity of spatial coordinates, it
can generate arbitrary-scale images in a continuous field.
However, the difference between RGB images and HSIs
usually hinders their applications to achieve HSI arbitrary-
scale super-resolution without spectral distortion, as shown
in Figure 2. First of all, the pixel value of RGB images
is three discrete channels—Red (R), Green (G), and Blue
(B), while HSI’s approximates a continuous spectral curve.

Intuitively, regressing spectral curves by spatial coordinates is
more challenging than regressing three discrete channels due
to their continuity and non-linearity. Besides, even a slight
change in spectral curves may lead to huge differences in the
characteristics of ground objects, given their highly continuous
and non-linear nature, whereas this has little influence on RGB
images. So, finding an effective and efficient way to conduct
arbitrary-scale super-resolution for HSIs is an urgent problem
in the domain.

To address the above problems in HSI super-resolution, we
attempt to treat it as a token-based query-to-spectrum process
in the paper. The HSI, in the process, is conceptualized as a
dictionary of pixel-wise tokens, each of which involves spatial-
spectral features, position information, and scale information.
To obtain a HR HSI, it would create a series of HR tokens
as queries to retrieve matched spectral features from the LR
dictionary. Finally, the HR tokens are rearranged spatially
based on their position to compose the HR HSI. Since the
HR tokens can be produced flexibly (e.g., through random
initialization), we can generate a desired number of them
to reconstruct our HR HSI, thus achieving arbitrary-scale
super-resolution. In addition, the approach considers not only
position information but also spectral features during retrieving
so that it is able to increase spectral precision in the super-
resolved HSI.

As a result, we designed an arbitrary-scale super-resolution
method, namely SQformer, for HSIs. As shown in Figure 3,
it firstly converts the LR HSI into a dictionary of LR tokens
by a feature backbone, which incorporates spatial and spectral
features of HSIs into tokens to ensure their visual continuity
and to reduce spectral redundancy. Meanwhile, it would create
a set of HR tokens as queries in the HR token construction
stage. To make the token creation flexible, we design an
implicit spectral token (particularly a learnable vector) and
replicate it multiple times to initialize the HR tokens. In
other words, each HR token is a copy of the implicit spectral
token at the beginning. The implicit spectral token is learned
through the super-resolution training loss, so it can find a better
representation for querying. Given the time complexity of
matching in a large dictionary (HSIs typically contain tens of
thousands of pixels) and the local spatial relationship between
HR and LR tokens, we would find a LR candidate set for each
HR token in accordance with Euclidean distance ahead.

Next, the HR tokens and their candidate set are fed into
a transformer decoder to search for appropriate spectral re-
sponses. The transformer decoder is composed of several
cross-attention and self-attention modules, which are stacked
alternatively. The cross-attention module takes as input the
query token and its candidate set to soft-weight features from
the latter according to their spectral and positional similarity;
while the self-attention module takes as input all HR tokens
from the cross-attention module to explore their non-local
similarity to further register their spectral response. The non-
local similarity typically exists in HSIs but has been less
explored for HSI super-resolution.

To our knowledge, this is the first time to do arbitrary-
scale super-resolution for HSIs with a token-based query-to-
spectrum scheme and a transformer decoder. Although there is
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Fig. 3. The overall architecture of SQformer. It includes feature extraction, HR token construction, and token-wise querying three stages. Here takes scaling
up the LR HSI by ×8 as an example to demonstrate the process. The SQformer starts with converting the LR HSI into a dictionary of LR tokens through the
feature backbone, embedding pixel-wise spatial and spectral features into the tokens. Concurrently, it would copy the implicit spectral token 8H × 8W times
to produce HR tokens. Before passed into the transformer decoder in the next stage, the HR tokens will preselect a candidate set from the LR dictionary with
their local spatial prior. The selected tokens are concatenated with position and scale tokens, which is fused by a FFN to enhance its positional and scale
representation. Afterward, the HR tokens and their candidate set are fed into the transformer decoder to conduct our query-to-spectrum process regarding the
former as queries and the latter as keys and values. Finally, the output HR tokens are rearranged in space to form the target HR HSI.

an RGB super-resolution approach, called ITSRN [29], similar
to ours, we differ in the following aspects: firstly, we use HR
tokens derived from the implicit spectral tokens as queries,
instead of spatial coordinates, and consider spectral features in
retrieving to reduce spectral distortion; secondly, we also com-
prehensively consider local spatial relationships between HR
and LR tokens as well as scale factors to improve model effi-
ciency and performance; thirdly, the model incorporates non-
local similarity among HR tokens to refine spectral responses
during the super-resolution process for HSIs. Extensive super-
resolution experiments on remote sensing datasets demonstrate
that our methods can better super-resolve LR HSIs to arbitrary
scales while increasing their spectral precision than other
methods, as observed from both quantitative and qualitative
results. An additional classification experiment on our super-
resolved HSIs proves that increasing spatial resolution of HSIs
can improve performance on the downstream task. The main
contributions of this paper can be summarized as follows:

• This paper proposed a token-based query-to-spectrum
scheme to address the challenges of HSI arbitrary-
scale super-resolution. This approach converts HSI super-
resolution as a spectral retrieval process from LR HSIs.
The retrieval process is driven by input queries of
which reconstruction is not restricted by scale factors
and is theoretically infinite so that it is able to achieve
arbitrary-scale magnification. Besides, it considers not
only spatial distance but also spectral similarity between
LR and HR tokens in matching, beneficial for spectral
consistency after super-resolution. To this end, a specific
model, namely SQformer, for HSI arbitrary-scale super-
resolution is proposed.

• To better represent raw HSIs, an implicit spectral token
is designed. Inspired by spectral similarities at the low-
frequency region, we construct an implicit spectral token
(essentially a learnable vector), which is used along with
pixel coordinates to depict HSIs and to facilitate query
construction. As the implicit spectral token learns under
the supervision of training loss, it would yield a better
representation for low-frequency spectral information. In

addition, relative position and scale information that is
crucial for super-resolution are also embedded into tokens
to enhance their feature representation.

• A local spatial prior is imposed on the spectral re-
trieval process to accelerate its running. It is inefficient
to retrieve the spectral feature for queries within LR
HSIs that contain tens of thousands of pixels. More-
over, running deep learning models is computationally
intensive. Considering the local spatial relationships in
the mapping between HR and LR HSIs, we employ it to
restrict our retrieval space, thereby reducing unnecessary
computation.

• Extensive experiments on HSI datasets demonstrate our
proposed method is superior to other methods. An ex-
tra classification experiment on our super-resolved HSIs
proves that increasing spatial resolution of HSIs is indeed
beneficial for the downstream task. To be convenient
for reproduction, our code will be released at: https:-
//github.com/ShuGuoJ/SQformer.git.

The remainder of the paper is organized as follows. In Sec-
tion II, we will review related works regarding hyperspectral
image super-resolution and arbitrary scale super-resolution.
Then, a detailed elaboration of our proposed method is pro-
vided in Section III. A series of ablation and comparative
experiments are conducted in Section IV. Finally, conclusions
are made in Section V.

II. RELATED WORKS

A. Single Hyperspectral Image Super-resolution

Single hyperspectral image super-resolution algorithms
serve as a complementary approach for hardware, assisting in
enhancing the spatial resolution of HSIs. It is more efficient
and straightforward than popular hyperspectral and multispec-
tral fusion, where only LR HSIs are used. Unfortunately,
the coupling of spatial and spectral characteristics in HSIs
poses a challenge, how to retain spectral fidelity after spatial
magnification, for HSI super-resolution. Previous research
regards hyperspectral image super-resolution as a constrained
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optimization problem that is solved via sparsity [20]–[22],
non-local similarity [30], [31], and low rankness [32], [33].
These works are restricted by limited human knowledge,
which are hard to sufficiently characterize the complex patterns
in HSIs and achieve unsatisfactory HR results. Besides, they
split super-resolution into several independent stages, easily
incurring an under-fitting solution. End-to-end learning has
been proven to be superior to multistage optimization.

In the last decade, deep learning, which is able to learn
abstract representations through end-to-end training, has been
introduced into this field. They all follow a standard architec-
ture from RGB image super-resolution: feature extraction and
projection from LR to HR. Their main contribution focuses
on extracting features from HSIs through deep learning for
reconstruction. According to the type of used networks, they
can be divided into 2D CNN [34], [35], 3D CNN [36], and
the mixture of 2D and 3D CNN [37], [38]. Li et al. [34]
used 2D CNN combined with a spatial constraint strategy to
super-resolve HSIs. The spatial constraint strategy optimizes
the model by making LR HSIs generated by super-resolved
HSIs close to real LR ones. Considering the 3D structure
of HSIs, Mei et al. [36] replace 2D CNN with 3D CNN to
simultaneously slide on the spatial and spectral dimensionality.
Due to the sophisticated coupling nature of HSIs, neither of
them performs well in spectral and spatial feature extraction.
So, Wang et al. [37] and Li et al. [38] design hybrid networks
of 2D CNN and 3D CNN for better joint feature extraction.

HSIs are typically input into models as a whole for super-
resolution, resulting in intensive memory usage, which is not
ideal for edge devices. Therefore, some works attempt to scale
up every band individually, and Li et al. [39], as a representa-
tive of them, input each band and its two neighboring bands
into models to obtain the super-resolved band one by one.
To mitigate significant spectral distortion in resultant HSIs
caused by separated super-resolution for each band, they also
designed an enhanced back-projection method to further refine
the results with spectral angle constraint. In the previous stage,
acquiring HSIs in remote-sensing is hard and expensive, while
a great number of RGB images is available. To alleviate the
lack of HSIs, Li et al. [40] used RGB image super-resolution
as an auxiliary task to pre-train deep learning models. On the
other hand, Sidorov et al. [41], inspired by deep image prior
[42], proposed deep hyperspectral prior to reduce dependency
on a large amount of HSIs for deep learning models.

Although the quality of hyperspectral image super-
resolution has been greatly improved with the powerful ca-
pability of deep learning, the earth observation and multi-
modalities learning have proposed some new requirements for
this domain, e.g., freely upsampling HSIs to arbitrary spatial
resolution to get visual details at different levels and to be
aligned with other HR data. However, current methods all fail
to be competent for this demand since they need to preset a
scale factor for models. Once the models finish training, they
are only able to scale up HSIs with the predetermined factor.
Moreover, training a separate model for each scale is infeasible
and inefficient in practice. Thus, how to model degradation
processes for different scales and achieve arbitrary-scale super-
resolution in a single model for HSIs in remote sensing is

worth considering.

B. Arbitrary-Scale Super-resolution

Until now, there are no arbitrary-scale super-resolution
methods designed for HSIs, so we introduce arbitrary-scale
super-resolution for RGB images as guidance here. Arbitrary-
scale super-resolution in deep learning, proposed by Hu et al.
[27] firstly, aims to magnify images to arbitrary scale factors
only through a single deep learning model. Conventional
methods, such as interpolation [43], [44], have been able to
do this via a set of hand-crafted parameters. Still, they fail
to achieve high-quality and photo-realistic HR images due to
poor prior knowledge. Hu et al. [27] is almost the first to
propose a deep learning network, MetaSR, for arbitrary-scale
super-resolution. Their core idea is designing a meta learner
as a parameter generator to produce a group of convolutional
kernels based on pixel coordinates and scale factors. These
convolutional kernels play a role in projecting pixels into
any position in HR images, enabling arbitrary-scale super-
resolution and outperforming conventional interpolation-based
methods. This highly novel idea attracts researchers to do
arbitrary-scale super-resolution with deep learning. Wang et
al. [45] develop a plug-in module that includes multiple scale-
aware feature adaption blocks and a scale-aware upsampling
layer for asymmetric super-resolution.

Afterward, Chen et al. [28] proposed Local Implicit Image
Function (LIIF) to represent images continuously, which takes
pixel coordinates as inputs and outputs their corresponding
RGB values. Its basic concept involves implicit neural func-
tions, where deep learning networks are trained to learn an
image function with respect to pixel coordinates, rather than
conventionally learning feature extraction. As the image func-
tion implicitly encoded in neural networks is related to contin-
uous spatial coordinates, discrete images are transformed into
a continuous space. As a result, it is capable of regressing pixel
values in any position of HR images. Subsequently, Yang et al.
[29] developed ITSRN to super-resolve screen content images
to arbitrary scales, in which pixel coordinates in LR and HR
images are seen as query-key matching pairs to aggregate
similar pixel values. Yet, multiple properties of pixels and
non-local similarity in HR images, which can boost image
quality further, are ignored in ITSRN. Currently, there are
many improvements [46]–[48] based on the aforementioned
works to make images freely scalable.

Their success inspires us to achieve arbitrary-scale super-
resolution for HSIs to meet the increasing requirements in
the HSI domain. Especially when hyperspectral imagers are
becoming more lightweight, miniaturized, and cheaper, we can
obtain abundant data to train deep learning models. But the
gap between RGB and hyperspectral images prevents us from
directly applying the above methods to the HSI domain. Owing
to the coupled spatial-spectral structure, HSI super-resolution
requires us to carefully maintain pixel-wise spectral consis-
tency when performing spatial magnification. Thus, how to
design an effective arbitrary-scale super-resolution architecture
for HSIs is worth considering.
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Fig. 4. Local spatial prior. After scaling down the HR tokens with αH×αW
into the space of the LR HSI with H ×W , we can clearly observe that the
HR token falls within the gray square region in the LR HSI and is highly
correlated with the LR tokens inside.

HR target

LR HSI

𝛼↑

𝛼↓

Fig. 5. Spatial unoverlap. As α decreases, the required number of tokens
also declines, resulting in a sparser distribution in space, which causes spatial
semantic discontinuity in HSIs.

III. METHODOLOGY

To be convenient for scaling up LR HSIs to arbitrary sizes
by a single model, a token-based query-to-spectrum scheme
is proposed that converts HSI super-resolution as a retrieval
problem. Its core process is using a set of HR tokens as queries
to retrieve matched spectral features from the LR dictionary.
Benefiting from a flexible style for token construction, it
can achieve HSI arbitrary-scale super-resolution by setting a
desired number of HR tokens. Next, we will first describe our
overall pipeline, as shown in Figure 3, and then explain our
design for SQformer.

A. Overall pipeline

Figure 3 illustrates our arbitrary-scale super-resolution ap-
proach SQformer, which includes three stages: feature extrac-
tion, HR token construction, and token-wise querying. In the
feature extraction stage, a LR HSI I ∈ RH×W×B is fed into a
feature backbone to embed its spatial and spectral features
into tokens, forming a dictionary Z of LR tokens in the
end. Each element in the dictionary is a pixel-wise token, so
Z = {z0,0, . . . ,zH,W }. Here H , W , and B denote the height,
width, and band number of the LR HSI. In the HR token
construction stage, it would copy the implicit spectral token
p ∈ Rc αH × αW times to produce a series of HR tokens
H = {h0,0, . . . ,hαH,αW } as queries for each position in the
HR HSI. Note that c is channel dimension and α denotes an

upsampling factor. To be convenient, we set the HR size is α
times of the LR size here. As query can be constructed freely
in intuition, the HR size actually can be arbitrary.

Querying in a large dictionary, where HSIs generally include
tens of thousands of pixels, has high time complexity, but
there exist local spatial relationships between LR and HR
tokens that HR tokens are highly related to neighboring LR
tokens in space (displayed in Figure 4). Consequently, we
employ this local spatial prior knowledge to find a candi-
date set of LR tokens for each HR token to restrict its
matching space. Specifically, the HR token would sample K
spatially nearest LR tokens zi,j as its candidate set Ui,j ,
based on Euclidean distance. K is typically set as 4, so
Ui,j = [z⌊i/α⌋,⌊j/α⌋, z⌊i/α⌋,⌈j/α⌉, z⌈i/α⌉,⌊j/α⌋, z⌈i/α⌉,⌈j/α⌉],
where ⌈·⌉ and ⌊·⌋ denote rounding real numbers up and down.
In order to enhance the position and scale representation of
candidate tokens, a position token and a scale token are con-
catenated behind them. The produced hybrid tokens are further
fused by a feed-forward network (FFN) that is composed of
two fully connected layers and a non-linear activation function
lying in their midst.

Afterwards, the HR tokens hi,j and corresponding can-
didate sets Ui,j then are transmitted into a transformer
decoder in the token-wise querying stage. The transformer
decoder stacks cross-attention and self-attention modules by
turns. Its cross-attention module takes as input the HR to-
kens and their candidate sets to search for matched spectra,
while the self-attention module takes as input all HR tokens
[h0,0, . . . ,hαH,αW ] to capture their intrinsic non-local similar-
ity. The exploration of non-local similarity here would further
improve spectral consistency for super-resolved HSIs. In the
end, all HR tokens are aligned with spectral dimension B by
a FFN, composing the target HR HSI.

B. Feature extraction

To increase spatial coherence and decrease spectral redun-
dancy, a feature backbone fβ(·) is used here to embed spatial-
spectral features into tokens, shown as follows:

Z = fβ(I) (1)

Then, the hyperspectral cube I is converted into a dictionary
of LR tokens Z.

We use an existing deep learning model [49]–[52] as our
feature backbone since our super-resolution scheme can be
plug-and-play into any model. We remove all downsampling
and pooling operations from the feature backbone fβ(·) to
keep the spatial size of feature maps identical to input size.
Although the above operations are widely used in vision
models to decrease running memory and computation, our
objective here is to obtain pixel-wise tokens for LR HSIs.

C. Token design and local spatial prior

In the subsection, we will detail how to design our im-
plicit spectral token, position token, and scale token. These
tokens play crucial roles in constructing HR tokens, enhancing
positional representation, and capturing scale changes. An

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3463745

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on September 25,2024 at 08:09:43 UTC from IEEE Xplore.  Restrictions apply. 



6

TABLE I
QUANTITATIVE ABLATION STUDY OF SQFORMER ON THE GF5 DATA SET.

HERE, -P/-S REFERS TO REMOVING THE POSITION TOKEN AND SCALE
TOKEN FROM LR TOKENS RESPECTIVELY, WHILE +L REFERS TO ADDING

LAYER NORMALIZATION TO SQFORMER.

In-distribution Out-of-distribution
×2 ×3 ×4 ×6 ×8 ×16

SQformer (-P) 35.06 31.95 31.00 29.47 28.63 27.02
SQformer (-S) 40.44 35.55 33.77 31.11 29.77 27.43
SQformer (+L) 40.23 35.40 33.65 31.05 29.74 27.46

SQformer 40.54 35.65 33.86 31.21 29.86 27.52

introduction to the local spatial prior employed in the approach
is also provided here

Implicit spectral token. To learn a better representation, the
implicit spectral token p is designed as a learnable vector that
is updated with model weights by the training loss. As a result,
the learned token would include the intrinsic characteristic
concerning spectra. During constructing HR tokens, it would
be copied αH × αW times to initialize them.

Local spatial prior. Figure 4 illustrates that, after scaling
LR and HR tokens into the same space, the HR token falls
into a local region of the LR HSI and is highly related to LR
tokens in this region. Thus, we employ this local spatial prior
to restrict the matching space of HR tokens. Concretely, we
adopt the Euclidean distance between HR and LR tokens to
find K nearest LR tokens for every HR token. The sampled
LR tokens serve as its candidate set for matching.

Position token. Despite restricting the matched space, the
distance of these candidate tokens to the HR one is not
identical, and the closer a candidate token is to the HR one, the
greater its importance. Moreover, the transformer is insensitive
to their spatial relationship by nature. Thus, we have designed
a position token to indicate the spatial relationship between
candidate and HR tokens. The position token must be flexible
and adaptive to different spatial sizes since the input and
output sizes in arbitrary-scale super-resolution vary in a large
range. As a result, we assign relative coordinates of the HR
and candidate tokens in terms of the x-axis (height) and y-
axis (width) to the position tokens. Then, it is attached to the
candidate token, where z⌊i/α⌋,⌊j/α⌋ is taken as an example:

z̃⌊ i
α ⌋,⌊ j

α ⌋ = [z⌊ i
α ⌋,⌊ j

α ⌋, ∆x,∆y] (2)

Here ∆x and ∆y present the relative position of z⌊i/α⌋,⌊j/α⌋
with respect to hi,j on two axes. And they are normalized in
[−2, 2] to avoid extreme values.

Owing to the relative position token, it does not need
other extra operations, such as interpolation, to extend its
indicated range when encountering larger spatial-size HSIs.
This usually happens on absolute position encoding, where a
set of position tokens is predetermined, such as the sin-cos
function. Meanwhile, no trainable parameters are introduced
here to increase the training load.

Scale token. The spatial arrangement of HR tokens in re-
lation to LR tokens changes with different upsampling scales,
as shown in Figure 5. With a decrease of α, the HR tokens
will distribute more sparsely, causing their candidate tokens
does not overlap. This would incur visual block artifacts in
our super-resolved HSIs. Thus, we design a scale token [1/α]

TABLE II
QUANTITATIVE COMPARISON BETWEEN SQFORMER WITH SIN-COS [53]

AND OUR PROPOSED POSITION TOKEN ON THE GF5 DATA SET.

In-distribution Out-of-distribution
×2 ×3 ×4 ×6 ×8 ×16

sin-cos [53] 37.06 34.01 33.31 30.87 29.20 25.12
relative pos. 40.54 35.65 33.86 31.21 29.86 27.52

TABLE III
QUANTITATIVE ABLATION STUDY ON K NEAREST NEIGHBORS.

K
In-distribution Out-of-distribution

×2 ×3 ×4 ×6 ×8 ×16
36 40.46 35.56 33.77 31.13 29.80 27.49
16 40.53 35.62 33.84 31.18 29.84 27.48
4 40.54 35.65 33.86 31.21 29.86 27.52

and also attach it behind candidate tokens in order to avoid
the above issue, which is shown as follows:

ẑ⌊ i
α ⌋,⌊ j

α ⌋ = [z̃⌊ i
α ⌋,⌊ j

α ⌋, 1/α] (3)

Then, the result tokens ẑ⌊ i
α ⌋,⌊ j

α ⌋ is transmitted into a FFN
to fuse the spatial-spectral feature, relative position representa-
tion, and scale change for better representation. The operation
of FFN is presented as follows:

u⌊ i
α ⌋,⌊ j

α ⌋ = W2(σ(W1ẑ⌊ i
α ⌋,⌊ j

α ⌋)) (4)

where W1 ∈ Rdu×(c+3) and W2 ∈ Rdu×du are trainable
parameters and σ(·) is the rectified linear unit (ReLU). du
is channel dimension of u. Afterward, the candidate token
is represented as u⌊i/α⌋,⌊j/α⌋ for a clear distinction, and
the set of nearest neighbors is transformed into Ûi,j =
[u⌊i/α⌋,⌊j/α⌋,u⌊i/α⌋,⌈j/α⌉,u⌈i/α⌉,⌊j/α⌋,u⌈i/α⌉,⌈j/α⌉] as well.

D. Token-wise querying
A transformer decoder consisting of N attention blocks is

placed here to carry out the query-to-spectrum process. Every
attention block includes a cross-attention module to match an
appropriate spectrum from candidate sets for HR tokens and
a self-attention module to explore non-local similarity among
HR tokens. Each of them is also followed by a FFN to enhance
channel features. Specifically, the cross-attention takes the HR
token hl

i,j as query and its LR candidate Ûi,j as key to do
match by the attention mechanism, which is shown as follows:

ĥl
i,j = Attention(Q,K,V)

= softmax(
QKT

√
dK

)V (5)

where Q = hl−1
i,j Ŵl

Q, K = Ûi,jŴ
l
K, V = Ûi,jŴ

l
V. Here, l

denotes the layer number and h0
i,j = hi,j when l is 0. Besides,

Ŵl
Q ∈ Rc×dQ , Ŵl

K ∈ Rdu×dK , Ŵl
V ∈ Rdu×dV are three

linear mappings concerning Q, K, and V respectively. The
dQ, dK, dV are the channel dimension of Q, K, and V

respectively. Then Ĥl = [ĥl
0,0, . . . , ĥ

l
αH,αW ] is got.

The Ĥl ∈ R(αH×αW )×dV is passed into the self-attention
module to aggregates similar HR token features by global
attention due to the non-similarity in HSIs, that is

Hl = Attention(ĤlWl
Q, ĤlWl

K, ĤlWl
V) (6)
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Fig. 6. Qualitative comparison between two nearest neighbor selections on
the GF5 data set.

Here, Wl
Q ∈ RdV×dQ , Wl

K ∈ RdV×dK , and Wl
V ∈

RdV×dV . Considering the position-invariance of patterns, e.g.,
objects belonging to the same class but lying in different posi-
tions should share similar features as well, positional encoding
is not added here. At the end of the transformer decoder, a FFN
is used to align the feature dimension of HR tokens to B so
as to compose the target HR HSI HN ∈ RαH×αW×B .

IV. EXPERIMENTS

A. Data sets and experimental setup

HSI Super-resolution data sets. We choose two HSI
data sets, Gaofen5 (GF5) and Chikusei, as benchmarks to
evaluate super-resolved results by peak signal-to-noise ra-
tio (PSNR), structural similarity (SSIM), and spectral angle
mapping (SAM). GF5 is obtained by a visible short-wave
infrared advanced hyperspectral imager (AHSI) with 30 m
spatial resolution mounted on the Gaofen5 satellite. The HSIs
in GF5 include 330 bands (150 visible and near-infrared
bands and 180 short-wave infrared bands) ranging from 0.4
to 2.5 µm. Note that only the first 150 bands are used for
super-resolution. In our experiments, 1540 images serve as
the training set, and 145 images compose the testing set.
Another data set, Chikusei, is collected by the Headwall
Hyperspec-VNIP-C imager over agricultural and urban areas.
The whole image with the size of 2517 × 2335 and 2.5 m
spatial resolution includes 128 bands from 0.363 to 1.018 µm.
In the experiments, 81 patches with the size of 256× 256 are
clipped from the top and left part following [55]. Among them,
64 patches are used to train, and 17 patches remain to test.

Feature backbone. As the proposed approach can be plug-
and-play into any deep learning models, we conduct HSI
arbitrary-scale super-resolution experiments on two CNN-
based architectures, EDSR-baseline [49] and RDN [50],
and two transformer-based architectures, SwinIR [51] and
Restormer [52], respectively. The chosen models serve as the
extractor fβ to encode spatial-spectral features in LR HSIs.
They all have removed downsampling and pooling operations
to keep the spatial size of input and output unchanged.

Parameter setting. The N in the transformer decoder is
set as 3. Meanwhile, each self-attention layer consists of 96
hidden units, 4 heads, and 4 times intermediate dimensionality.
Note that layer normalization is removed here since we find
it is harmful to super-resolution empirically.

Optimization. For training, we follow the prior work [49]
and randomly crop 48 × 48 patches from HSIs as inputs to
networks. At the same time, scale factors for each patch are

sampled from the uniform distribution U(1, 4), and HR coun-
terparts are seen as the ground-truths. The model is updated by
the Adam optimizer with an initial learning rate 2e−4 for 1000
epochs in total, which decays by 0.5 at [500, 700, 900, 950]th
epochs, while the configurations of MetaSR and LIIF follow
[28]. As our goal is to perform arbitrary scale super-resolution
for single HSIs, we evaluate the model at scale factors in
training distribution ×1 − ×4 and out of the distribution:
×6 − ×16. It is worth noting that scale factors beyond the
distribution are much larger than training ones.

Compared methods. We compare our methods with other
arbitrary-scale super-resolution methods, such as MetaSR [27],
LIIF [28], and ITSRN [29], and some single-scale super-
resolution methods, such as EDSR-baseline [49], RDN [50],
MCNet [56], SSPRS [54], GDD [57], EUNet [58], and ERCSR
[38]. The single-scale super-resolution methods can only up-
sample HSIs to a fixed scale.

We set two benchmarks in the following comparative exper-
iments. One is a comparison to arbitrary-scale super-resolution
methods, while another is a comparison to single-scale super-
resolution methods. The former focuses on the comprehensive
performance in in-distribution ×2−×4 and out-of-distribution
scale factors ×6−×16, but the latter is more concerned about
the one-side performance in specific scale factors [×2, ×4].

B. Ablation study
Subsequently, a series of ablation experiments are conducted

to evaluate the effectiveness of SQformer in terms of the
position token, scale token, layer normalization, and candidate
token sampling. Here, all ablation experiments employ RDN
as the extractor to process HSIs and report their PSNR.

Position token. The position token with relative positional
information (relative pos.) about the HR and LR tokens is
attached behind candidate tokens, making the transformer
decoder perceive their spatial relationship. By comparing
SQformer and SQformer (-P) in Table I, we can observe
that SQformer without position tokens has poor performance,
demonstrating positional information is important for super-
resolution. This is because HR tokens can also decide which
candidate is more important by their position relationships. On
the other hand, the candidate tokens and HR tokens both are
reshaped as sequences before inputting into the transformer
decoder, losing their 2D spatial structure. So, it is necessary
to introduce additional position indications to maintain the
2D spatial structure implicitly. In Table II, we also make a
comparison with sin-cos, which is widely applied in natural
language processing [53] and image classification [59] to
represent the absolute position of tokens. The experimental
result shows SQformer with the absolute position indicator,
sin-cos [53], still performs poorly, especially at ×16. The
absolute positional encoding needs interpolation operation to
extend its encoding range when encountering larger-size HSIs,
decreasing the fidelity of position description. The success of
our position token validates our analysis in Section III-D that
position encoding for super-resolution should be extensible
since its size of inputs and outputs varies in a large range.

Scale token. To make SQformer perceive scale change
as well, we append scale tokens to candidate tokens. By
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MetaSR LIIF SQformer (ours) GTLR ITSRN

×4
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任意尺度

Fig. 7. Qualitative comparison of false-color images to other arbitrary scale super-resolution methods on the GF5 data set. The false-color images are composed
of the 19th (blue), 29th (green), and 61th (red) bands. Here RDN is used as the feature backbone for all methods, and GT refers to HR false-color. Unlike
others, SQformer can better reconstruct loss information on boundaries at the first row (×4) and has more apparent outlines at the second row (×8).

MetaSR LIIF GTITSRN

×4

×8

0.10.0

0.20.0

HR false-color

任意尺度

SQformer (ours)

Fig. 8. Qualitative comparison of mean absolute error visualizations on the GF5 data set. Here RDN is used as the feature backbone for all methods, and
GT refers to a zero matrix. The bluer the color, the closer to HR HSIs the super-resolution results.

comparing SQformer and SQformer (-S) in Table I, it is
observed that adding scale tokens is beneficial to further
improve super-resolution performance. On the one hand, scale
tokens provide the relative ratio of LR to HR HSIs for the
model. It is beneficial for alleviating image distortion when
HR tokens distribute more sparsely as α decreases. On the
other hand, it also avoids the sub-optimal problem, e.g., ×2
images is the sub-solution of ×4 ones.

Layer normalization. Although many recent models adopt
layer normalization to unify the distribution of neural units,
we find it may not be suitable for SQformer empirically. In
Table I, it is evident that SQformer (+L) works more badly
than SQformer. The reason may be LR and HR HSIs do not
lie in the same distribution but layer normalization assumes
they are.

Candidate sampling. We will first sample K nearest neigh-
bors for each HR token as its candidate set and input them into
the transformer decoder. The sampling is conducted based on
their spatial Euclidean distance to restrict the retrieval space.

In Table III, we increase K from 4 to 36 and report their
super-resolution performance. It is observed that increasing
K gradually has a negative impact on SQformer since more
and more distant and irrelevant LR tokens are considered.
As a result, K = 4 is optimal. In addition, we also replace
Euclidean distance regarding spatial coordinates with Cosine
similarity about features. Figure 6 shows SQformer adopting
Cosine similarity works very poorly for super-resolution. It
would sample identical LR tokens for HR ones since they all
are initialized by the implicit spectral token and have the same
feature at the beginning, causing SQformer collapse.

C. Comparison to arbitrary-scale super-resolution methods

This subsection reports comparisons to arbitrary-scale
super-resolution methods (MetaSR [27], LIIF [28], ITSRN
[29]) on 4 different feature backbones (EDSR-baseline [49],
RDN [50], SwinIR [51], and Restormer [52]), respectively.
The combination method is denoted as ’a-b’, where ’a’ rep-
resents the feature backbone name and ’b’ represents the
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TABLE IV
QUANTITATIVE COMPARISON TO METHODS FOR ARBITRARY SCALE SUPER-RESOLUTION ON THE GF5 DATA SET. THEY ARE EVALUATED BY PSRN (DB),

SSIM, AND SAM (DEGREE◦). THE BEST RESULT IS BOLDED. * REPRESENTS THAT THE MODEL IS MODIFIED WITH THE LIIF DECODER TO
ACCOMMODATE ARBITRARY-SCALE SUPER-RESOLUTION.

Method
In-distribution Out-of-distribution

×2 ×3 ×4 ×6 ×8 ×16
PSNR↑ SSIM↑ SAM↓ PSNR↑ SSIM↑ SAM↓ PSNR↑ SSIM↑ SAM↓ PSNR↑ SSIM↑ SAM↓ PSNR↑ SSIM↑ SAM↓ PSNR↑ SSIM↑ SAM↓

Bicubic [44] 38.27 0.975 1.81 33.60 0.935 2.99 31.92 0.909 3.61 29.82 0.870 4.54 28.70 0.850 5.12 26.70 0.824 6.27
ERCSR∗ [38] 37.56 0.946 1.71 33.66 0.876 2.38 32.15 0.828 2.79 30.22 0.761 3.41 29.17 0.724 3.82 27.24 0.676 4.69
SSPRS∗ [54] 38.65 0.955 1.35 34.25 0.887 2.05 32.58 0.840 2.50 30.48 0.770 3.17 29.37 0.732 3.60 27.34 0.678 4.52

Restormer-MetaSR [27] 38.57 0.977 1.39 34.17 0.941 2.07 32.52 0.917 2.55 30.50 0.880 3.22 29.41 0.860 3.66 27.43 0.829 4.61
Restormer-LIIF [28] 39.39 0.981 1.27 34.79 0.949 1.93 33.02 0.927 2.38 30.74 0.888 3.08 29.53 0.865 3.53 27.41 0.832 4.48

Restormer-ITSRN [29] 38.74 0.978 1.34 33.96 0.939 2.13 32.60 0.919 2.51 30.47 0.882 3.19 29.45 0.862 3.58 27.43 0.831 4.48
Restormer-SQformer (ours) 39.78 0.982 1.22 35.05 0.952 1.87 33.33 0.932 2.31 30.88 0.892 3.03 29.62 0.868 3.48 27.43 0.832 4.45

SwinIR-MetaSR [27] 38.72 0.978 1.36 34.22 0.941 2.05 32.55 0.918 2.54 30.45 0.879 3.37 29.25 0.855 4.06 27.07 0.815 5.62
SwinIR-LIIF [28] 40.09 0.983 1.19 35.26 0.954 1.83 33.51 0.934 2.27 30.95 0.893 3.00 29.66 0.868 3.47 27.40 0.832 4.45

SwinIR-ITSRN [29] 38.84 0.978 1.32 34.00 0.940 2.12 32.62 0.919 2.49 30.49 0.882 3.17 29.46 0.862 3.57 27.47 0.832 4.47
SwinIR-SQformer (ours) 40.17 0.984 1.17 35.34 0.955 1.80 33.59 0.936 2.23 31.02 0.894 2.96 29.72 0.870 3.43 27.47 0.833 4.40

EDSR-baseline-MetaSR [27] 38.63 0.977 1.38 34.18 0.941 2.08 32.53 0.917 2.56 30.47 0.880 3.24 29.38 0.859 3.68 27.40 0.829 4.64
EDSR-baseline-LIIF [28] 38.61 0.977 1.39 34.26 0.942 2.07 32.58 0.918 2.53 30.51 0.882 3.18 29.39 0.861 3.61 27.36 0.832 4.51

EDSR-baseline-ITSRN [29] 38.93 0.979 1.30 34.36 0.943 2.03 32.68 0.920 2.48 30.60 0.883 3.14 29.48 0.862 3.56 27.46 0.832 4.46
EDSR-baseline-SQformer (ours) 39.81 0.983 1.20 35.01 0.952 1.87 33.23 0.930 2.32 30.82 0.890 3.03 29.59 0.867 3.49 27.46 0.833 4.43

RDN-MetaSR [27] 39.86 0.983 1.24 35.00 0.952 1.92 33.27 0.931 2.38 30.79 0.889 3.15 29.57 0.864 3.64 27.43 0.829 4.69
RDN-LIIF [28] 39.78 0.982 1.23 35.03 0.952 1.91 33.22 0.930 2.35 30.81 0.889 3.06 29.59 0.866 3.51 27.44 0.833 4.45

RDN-ITSRN [29] 40.11 0.984 1.17 34.70 0.951 1.98 33.47 0.934 2.30 30.94 0.893 3.03 29.68 0.868 3.49 27.44 0.832 4.48
RDN-SQformer (ours) 40.54 0.985 1.12 35.65 0.958 1.73 33.86 0.939 2.16 31.21 0.899 2.88 29.86 0.873 3.36 27.52 0.834 4.37

MetaSR LIIF GTLR ITSRN

×4

×8

SQformer (ours)

Fig. 9. Qualitative comparison of false-color images to other arbitrary scale super-resolution methods on the Chikusei data set. The false-color images are
composed of the 20th (blue), 35th (green), and 45th (red) bands. Here RDN is used as the feature backbone for all methods, and GT refers to HR false-color.
For SQformer, the roads across fields at the first row (×4) are clearer, and the shape of land covers at the second row (×8) is more apparent than others.

arbitrary-scale super-resolution method name. Taking ”EDSR-
baseline” and ”MetaSR” as an example, it is dubbed as
”EDSR-baseline-MetaSR”. Next, we will showcase exper-
imental results on GF5 and Chikusei data sets from the
quantitative and qualitative perspectives.

Quantitative results. Table IV shows our quantitative com-
parisons to other methods on in-distribution (×1 − ×4) and
out-of-distributed (×6 − ×16) scale factors. On most scale
settings, SQformer outperforms other arbitrary-scale super-
resolution methods in terms of visual and spectral metrics,
indicating our method can better preserve spectral consistency
when upsampling HSIs to arbitrary sizes. Even at an extreme
scale factor of ×16, it still demonstrates comparable results to
other methods. Although ITSRN is similar to ours, it works
poorly for HSI reconstruction owing to its ignorance of the
characteristics of HSIs during super-resolution. In summary,
SQformer works better than current methods at in-distribution
and out-of-distribution scale factors on HSI super-resolution.

From the perspective of the architecture of feature extrac-
tion, CNN-based backbones are more suitable for SQformer,

especially for RDN which contains dense connections to
aggregate features from low to high levels. Contrary to ours,
recently popular LIIF prefers transformer-based backbones,
but it is still inferior to SQformer. The hierarchical data
structure has been extensively adopted in image classification
and segmentation to capture multi-scale features efficiently
and effectively, while few works adopt it in super-resolution.
Here, we use the newest U-shape network, Restormer [52], as
the extractor to perform super-resolution and the experimental
results show it is competitive with flat architectures like
EDSR-baseline backbones. The outstanding performance of
our method across 4 different feature backbones suggests its
superior compatibility

Table V shows comparison results on Chikusei which is also
extensively applied in evaluating remote sensing HSI super-
resolution. The experimental results show a similar conclusion
that SQformer surpasses others in most cases of in-distribution
and out-of-distribution scale factors. Moreover, SQformer with
CNN-based extractors can achieve better performance in re-
mote sensing HSI arbitrary scale super-resolution.
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Fig. 10. Qualitative comparison of mean absolute error visualizations on the Chikusei data set. Here RDN is used as the feature backbone for all methods,
and GT refers to a zero matrix. The bluer the color, the closer to HR HSIs the super-resolution results.

TABLE V
QUANTITATIVE COMPARISON TO METHODS FOR ARBITRARY SCALE SUPER-RESOLUTION ON THE CHIKUSEI DATA SET. THEY ARE EVALUATED BY PSRN

(DB), SSIM, AND SAM (DEGREE◦). THE BEST RESULT IS BOLDED.

Method
In-distribution Out-of-distribution

×2 ×3 ×4 ×6 ×8 ×16
PSNR↑ SSIM↑ SAM↓ PSNR↑ SSIM↑ SAM↓ PSNR↑ SSIM↑ SAM↓ PSNR↑ SSIM↑ SAM↓ PSNR↑ SSIM↑ SAM↓ PSNR↑ SSIM↑ SAM↓

Restormer-MetaSR [27] 40.09 0.967 3.64 38.00 0.966 3.44 36.03 0.955 3.88 33.91 0.931 5.01 32.39 0.905 6.13 30.05 0.848 8.74
Restormer-LIIF [28] 41.61 0.987 2.86 38.08 0.973 3.49 36.12 0.958 4.01 34.01 0.936 4.87 32.55 0.918 5.56 30.32 0.888 7.12

Restormer-ITSRN [29] 41.24 0.985 2.96 37.14 0.965 4.36 35.68 0.953 4.35 33.75 0.931 5.25 32.40 0.914 6.02 30.08 0.880 8.08
Restormer-SQformer (ours) 42.11 0.989 2.75 38.48 0.975 3.26 36.37 0.961 3.76 34.18 0.939 4.61 32.65 0.921 5.31 30.32 0.890 6.91

SwinIR-MetaSR [27] 41.72 0.987 3.08 37.96 0.971 3.72 35.78 0.954 4.55 33.51 0.926 6.07 32.01 0.903 7.30 29.54 0.855 10.24
SwinIR-LIIF [28] 41.73 0.988 2.79 38.12 0.973 3.38 36.18 0.959 3.87 34.07 0.937 4.71 32.59 0.920 5.37 30.37 0.891 6.87

SwinIR-ITSRN [29] 41.12 0.985 2.87 36.85 0.963 4.53 35.59 0.951 4.39 33.71 0.930 5.32 32.37 0.913 6.08 30.10 0.882 7.96
SwinIR-SQformer (ours) 42.16 0.989 2.65 38.44 0.975 3.18 36.35 0.961 3.71 34.16 0.939 4.55 32.64 0.921 5.24 30.28 0.891 6.84

EDSR-baseline-MetaSR [27] 40.75 0.983 3.68 37.23 0.965 4.58 35.18 0.946 5.45 33.05 0.916 6.85 31.63 0.892 8.11 29.21 0.842 11.06
EDSR-baseline-LIIF [28] 39.28 0.977 3.93 36.60 0.958 4.56 35.04 0.943 5.03 33.35 0.922 5.72 32.20 0.908 6.31 30.23 0.884 7.56

EDSR-baseline-ITSRN [29] 42.18 0.989 2.39 37.44 0.967 3.55 36.04 0.957 3.82 33.96 0.934 4.75 32.59 0.918 5.49 30.32 0.887 7.25
EDSR-baseline-SQformer (ours) 42.65 0.990 2.43 38.64 0.976 2.98 36.52 0.962 3.51 34.20 0.940 4.36 32.69 0.922 5.09 30.31 0.891 6.74

RDN-MetaSR [27] 41.73 0.987 2.98 37.88 0.970 3.77 35.75 0.953 4.58 33.54 0.926 5.91 32.09 0.904 7.07 29.72 0.859 9.75
RDN-LIIF [28] 39.94 0.980 3.96 37.15 0.963 4.57 35.50 0.949 5.00 33.62 0.927 5.71 32.38 0.911 6.32 30.27 0.883 7.62

RDN-ITSRN [29] 42.12 0.988 2.41 37.43 0.967 3.81 36.01 0.956 3.89 33.92 0.933 4.84 32.56 0.917 5.59 30.27 0.886 7.44
RDN-SQformer (ours) 42.85 0.990 2.47 38.91 0.977 2.99 36.74 0.964 3.48 34.38 0.941 4.32 32.83 0.924 5.05 30.44 0.893 6.70

TABLE VI
QUANTITATIVE COMPARISON TO METHODS FOR SINGLE-SCALE SUPER-RESOLUTION ON THE GF5 DATA SET. THEY ARE EVALUATED BY PSRN (DB),

SSIM, AND SAM (DEGREE◦). THE BEST RESULT IS BOLDED.

Metrics Bicubic EDSR-baseline RDN MCNet SSPRS GDD EUNet ERCSR SQformer (ours)

×2
PSNR↑ 38.27 38.93 38.90 38.55 39.87 36.61 38.91 39.05 40.54
SSIM↑ 0.975 0.979 0.979 0.955 0.966 0.947 0.958 0.959 0.985
SAM↓ 1.81 1.33 1.14 1.33 1.17 2.39 1.29 1.27 1.12

×4
PSNR↑ 31.92 32.80 33.01 32.45 33.01 33.02 32.09 32.67 33.86
SSIM↑ 0.909 0.922 0.931 0.835 0.853 0.910 0.823 0.842 0.939
SAM↓ 3.61 2.48 2.26 2.53 2.35 3.26 2.63 2.48 2.16

Qualitative results. We illustrate the qualitative comparison
of false-color images and mean absolute error (MAE) between
SQformer and compared SOTA (ITSRN, LIIF, and MetaSR)
on the GF5 and Chikusei data sets in Figure 7–10 respectively.
For an in-distribution scale factor ×4, our SQformer achieves
a more pleasing result than other comparative methods from
false-color images at the first row of Figure 7 and 9. SQformer
reconstructs details around borders more accurately and has
clear visual perception. Furthermore, the maps of MAE at
the first row of Figure 8 and 10 also demonstrate that our
result is closer to the ground truth. Even for the training scale
factor ×4, other methods fail to reconstruct lost spatial textures

and details, especially around borders. The HSI downsampled
×8 has suffered from bad spatial degradation shown at the
second row of Figure 7 and 9, where a large part of spatial
textures and details has got lost. Nonetheless, SQformer can
still reconstruct the shapes and borders of objects better,
achieving a more impressive and clear result than others. In
this case, MetaSR presents discontinuity, causing a ”block”
effect (zooming in for clear observation), and LIIF loses
high-frequency information, leading to a blurred result. Also,
ITSRN has a blurred result since only spatial relationships
between LR and HR HSIs are considered in reconstruction.
Their MAE maps at the second row of Figure 8 and 10 also
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b

c

d
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f

ITSRN

Chikusei_256_1280_256Fig. 11. Qualitative comparison of spectral curves of reconstructed HSIs on the GF5 and Chikusei data set at a, b, c, d, e, and f.

EDSR-Baseline MCNet ERCSR SQformer (ours)SSPRS

单尺度

GT

0.1

0.0

Fig. 12. Qualitative comparison to single-scale super-resolution methods at the ×4 scale factor. The first row illustrates their false-color image composed
by the 19th (blue), 29th (green), and 61th (red) bands, while the second is their mean absolute error image. Here, GT refers to the HR false-color image.
SQformer can better reconstruct boundary information, as shown at the first row (×4), and is more approximate to the GT, shown at the second row.

show consistent results.

Besides, we also show the spectral curves of super-resolved
HSIs on GF5 and Chikusei data sets in Figure 11. It reveals
three common spectral distortion cases, intensity differences
in (a), (b), and (c), tendency differences in (d), (e), and (f), as
well as smoothness differences in (c), (e), and (f). Although
comparative methods in (a), (b), and (c) are consistent with the
ground truth in terms of trends, their partial spectral intensity
is very different. In (d), (e), and (f), the tendency of compared
methods is distinct from the ground truth. In addition to
intensities and tendencies, the smoothness of reconstructed
spectra is another typical visual criterion. Our reconstructed
spectrum is more smooth than others in (c), (e), and (f). All
in all, spectral curves generated by ours are closer to the
ground truth, demonstrating the effectiveness of SQformer in
reconstructing HSIs with high-dimensional spectra.

Efficiency analysis. Table VII quantitatively shows the

TABLE VII
EFFICIENCY IN TERMS OF MODEL SIZE, PEAK MEMORY, RUNNING TIME,

AND FLOPS.

Queries Method Params. Mem.(GB) Time (ms) FLOPs

30000

MetaSR 23.51M 11435 17.01 684.92G
LIIF 1.69M 2169 9.95 67.37G

ITSRN 23.71M 22229 41.59 2705.12G
SQformer (ours) 1.90M 28975 35.21 45.71G

efficiency of SQformer and other comparative methods in
terms of the number of parameters (Params.), peak mem-
ory consumption (Mem.), running time, and floating point
operations (FLOPs). They are calculated when given 30000
query tokens at one time, and FLOPs is got by the third-
party library, THOP. Obviously, our model is much smaller
than ITSRN in terms of the number of parameters but a bit
bigger than LIIF. While our method may require more time
for HSI reconstruction, it’s important to note that the objective
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Fig. 13. Ability to integer and non-integer HSI super-resolution. SQformer
sampled [2, 3, 4] as integer scale factors and [2.2, 2.4, 2.8, 3.2, 3.4, 3.8] as
non-integer scale factors for HSI super-resolution, while comparative single-
scale methods magnified HSIs at [2, 4]. Ideally, once more scale factors are
sampled, our PSNR metrics within the range from ×2 to ×4 is nearly a curve.

TABLE VIII
LAND COVER CLASSES WITH NUMBER OF SAMPLES PER CLASS FOR THE

YRE DATA SET.

No. Class Amount
C1 Building 533
C2 River 5,376
C3 Salt marsh 4,995
C4 Shallow sea 17,550
C5 Deep sea 18,677
C6 Intertidal saltwater marsh 2,343
C7 Tidal flat 1,792
C8 Pond 1,787
C9 Sorghum 646

C10 Corn 1,509
C11 Lotus root 2,719
C12 Aquaculture 8,019
C13 Rice 5,508
C14 Tamarix chinensis 1,220
C15 Freshwater herbaceous marsh 1,417
C16 Suaeda salsa 874
C17 Spartina alterniflora 580
C18 Reed 1,970
C19 Floodplain 347
C20 Locust 75

Total 77,937

of HSI super-resolution is to enhance its quality to improve
downstream tasks, rather than for display on terminals. So, we
can tolerate its high latency.

D. Comparison to single-scale super-resolution methods

Apart from comparing with arbitrary-scale super-resolution
methods, we also make a comparison to some single-scale
super-resolution methods, such as EDSR-baseline [49], RDN
[50], MCNet [56], SSPRS [54], GDD [57], EUNet [58], and
ERCSR [38]. They experiment on the GF5 data set at scales
(×2 and ×4). These single-scale super-resolution methods are
only able to upsample HSIs to a predetermined scale factor
and are trained on the corresponding scale data set.

Quantitative results. Table VI reports our comparison to
single-scale methods, where SQformer has performed best at

[×2,×4]. Benefiting from the arbitrary-scale nature, SQformer
should have learned to incorporate cross-scale features. These
features may contribute to improving the quality of super-
resolution. The lowest SAM of SQformer suggests it excels
in providing accuracy spectra for super-resolved images.

Qualitative results. The super-resolution results and mean
absolute error images are displayed in Figure 12. We can find
that the false-color image produced by SQformer shows clearer
boundaries and outlines. Its mean absolute error image is also
more approximate to the ground-truth, particularly in the red
circle region. Both quantitative and qualitative comparisons
above indicate our excellent ability in HSI super-resolution.

Ability to non-integer HSI super-resolution. The ad-
vantage of our approach is non-integer super-resolution in
comparison to single-scale HSI super-resolution methods. In
order to demonstrate our non-integer super-resolution, we
tested the proposed method at nine sampled scale factors
[2, 2.2, 2.4, 2.8, 3, 3.2, 3.4, 3.8, 4] and plotted its PSNR curve,
shown in Figure 13. Single-scale super-resolution methods
can only perform integer super-resolution and must train a
specific model for each scale factor, which would waste a lot of
training resources and storage resources. However, our model
is one-shot training and is able to conduct HSI super-resolution
at any scale, including integer and non-integer. Consequently,
SQformer is more efficient in training and storing than single-
scale super-resolution methods to some extent.

E. Improvement to HSI classification task

The HSI classification task is chosen as a baseline to
evaluate the quality of super-resolved HSIs produced by our
method. The Yellow River Estuary (YRE), which is imaged
by the Gaofen 5 satellite over the Yellow River Estuary field,
is used as a benchmark data set. It includes a HSI with
1400×1400 size and has labeled 20 ground-object categories.
The detailed class information is displayed in Table VIII.
We evaluate classification performance with overall accuracy
(OA), where the higher OA, the better the performance.

Figure 14 shows classification results made by a logistic
regression classifier on the super-resolved HSI at four scale
factors (×1, ×2, ×3, ×4). Here, ×1 refers to the original
HSI. It is clear that classification accuracy has been improved
progressively as spatial resolution increases. This is because
high spatial resolution HSIs with clearer shapes and bound-
aries are beneficial for extracting ground-object features. The
experimental result here proves that super-resolving LR HSI to
get detailed spatial information can improve downstream tasks.
All in all, utilizing fine spatial and spectral information in high
spatial resolution HSIs enables a more precise interpretation
of the Earth’s surface.

V. CONCLUSION

This paper proposed a new method SQformer by converting
HSI super-resolution as a token-based query-to-spectrum pro-
cess to achieve HSI arbitrary-scale super-resolution. Extensive
experiments have been carried out on the GF5 and Chikusei
HSI datasets, where SQformer shows better performance than
either arbitrary-scale or single-scale super-resolution methods.
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Fig. 14. Qualitative and quantitative classification results of the HSI captured over the Yellow River Estuary by the Gaofen5 satellite at ×1, ×2, ×3, and
×4. The top-left part is the legend of visualization results.

The quantitative and qualitative results, in terms of spectrum,
prove its ability to precisely reconstruct pixels’ spectra during
spatial super-resolution. In addition to comparative experi-
ments, a series of ablation studies have effectively demon-
strated our module design as well. We have employed our
super-resolved HSIs at different scales for classification, in
which the higher spatial resolution of HSI results in increased
classification accuracy for detailed spatial information.

The new design here for HSI arbitrary-scale super-resolution
also comes with high latency. However, it is noted that
HSI super-resolution intends to provide high-quality HSI for
downstream tasks, instead of displaying on the terminal. As a
result, the method’s high latency is acceptable.
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