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A Center-Masked Transformer for Hyperspectral
Image Classification
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Abstract— Convolutional neural networks (CNNs) are widely
used in hyperspectral image (HSI) classification. However, the
fixed receptive field of CNN-based methods limits their capability
to extract global features. In recent years, transformer has
been introduced into networks to tackle this limitation, but
it brings other challenges, including a significant increase in
model size, the number of labeled training samples required,
and the limited effectiveness of sample encoding-reconstruction
pretraining methods for HSI classification. To address these
issues, a center-masked transformer (CMT) approach is proposed
to improve the HSI classification accuracy from two perspectives.
On one hand, a local-to-global token embedding (L2GTE) frame-
work coupled with a multiscale convolutional token embedding
(MCTE) module is used, which is well-designed to obtain local
and global embedding tokens. This effectively reduces the number
of model parameters. On the other hand, a regularized center-
masked pretraining (RCPT) task is proposed and first introduced
into the transformer-based network, which enables the network
to learn the dependencies between central ground objects and
neighboring objects without labels during the pretraining process.
The experimental results conducted on five public HSI datasets
demonstrate that our CMT approach outperforms other state-
of-the-art methods for HSI classification when training samples
are insufficient.

Index Terms— Convolutional transformer, deep learning (DL),
hyperspectral image (HSI) classification, mask autoencoder.

NOMENCLATURE

I Original HSI data.
H HSI data after dimensionality reduction

through PCA.
X Input sample patch.
h, w Height and width of the input sample

patch.
X ′ Partitioning result of the input sample

patch.
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X (i−1)s+1,is
i Subband with the band interval

between (i − 1)s + 1 and is.
s Number of spectral bands in each

subband.
Tlocal

i Local feature extracted from the i th

subband.
Tlocal Local feature sets of the subbands for

an input sample patch.
Tglobal Global feature obtained by

concatenating Tlocal along the feature
dimension.

E small
i ,Emid

i , E large
i Embedding processes at the small,

medium, and large scales, respectively.
T̃ Embedding sequence of Tglobal in the

RCPT task.
T̃′ Masked sequence obtained by the

sample reconstruction subtask.
X Pixel reconstruction result

corresponding to the T̃i .

I. INTRODUCTION

HYPERSPECTRAL remote sensing has the unique advan-
tage of simultaneously acquiring images and spectra of

ground objects. The acquired data, known as hyperspectral
images (HSIs), usually consist of dozens to hundreds of bands,
which contain rich spectral information and enable HSIs to
have more specialized applications than RGB images [1],
[2], [3], [4]. As supporting research for many applications,
HSI classification has received much attention. The goal is
to assign a class label to each pixel in HSIs, which is
similar to semantic segmentation in the field of computer
vision (CV). In early research, traditional classifiers such
as logistic regression and support vector machine (SVM)
are commonly used for HSI classification [5], [6], [7], [8].
Meanwhile, considering that the high dimensionality of HSIs
may lead to the Hughes phenomenon [9], principal compo-
nent analysis (PCA) [10], independent component analysis
(ICA) [11], and linear discriminant analysis (LDA) [12] are
widely adopted for spectral information extraction in the data
preprocessing stage. However, the above-mentioned methods
only use the spectral information of input samples and neglect
the spatial information of sample neighborhood. To extract
spatial features, a series of morphology-based methods have
been proposed, including morphological profile (MP) [13],
extended MP (EMP) [14], and extended multiattribute profile
(EMAP) [15]. Moreover, several filtering-based methods [16],
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[17] and coding-based strategies [18], [19] are also developed
to incorporate both spatial features and spectral features to
effectively improve the performance of HSI classification.

With the development of deep learning (DL), many excel-
lent DL-based networks have been successfully applied to
HSI classification, such as stacked autoencoders (SAEs),
deep belief networks (DBNs), convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and generative
adversarial networks (GANs) [20]. Among them, AE is widely
used in self-supervised and semi-supervised learning [21],
[22], [23], which endows the encoder with certain feature
extraction capabilities by encoding and reconstructing samples
without using labels. DBN is a probabilistic generation model.
Chen et al. [21] first introduced DL into HSI classification
and used SAEs for spectral feature extraction. After that,
Chen et al. [24] developed a DBN-based deep framework
to extract spectral–spatial features hierarchically. RNN has
the ability to process pixels of HSI as a sequence-based
data and performs classification of ground objects via net-
work reasoning [25], [26], [27], [28], [29]. Mou et al. [25]
first proposed a RNN framework for HSI classification.
Zhou et al. [28] designed a two-branch long short-term mem-
ory network (LSTM) to extract spectral feature and spatial
feature, respectively. GAN is trained in an adversarial manner
with a generative model and a discriminative model [30], and
Zhu et al. [31] explored the effectiveness of GAN for the first
time and achieved good performance for HSI classification.

CNN, as a relatively special network, has made a major
breakthrough in the field of CV. Despite the constant emer-
gence of new networks, CNNs can achieve competitive results
in various visual tasks, which may be attributed to the
continuous in-depth study on its network structure and the
combination with other networks. The inductive bias in CNNs
is well-suited for image processing tasks and is good at extract-
ing spatial–spectral features from HSIs. Some researchers
have explored the feasibility of applying CNN-based networks
to HSI classification. For example, Hu et al. [32] made a
preliminary attempt to stack several 1-D convolutional layers
to extract local spectral information and improved the clas-
sification accuracy. But the shortcoming is that the spatial
information of HSIs is not fully used. Roy et al. [33] proposed
a hybrid-CNN by combining the advantages of 3-D-CNN
and 2-D-CNN to achieve hierarchical spatial-spectral feature
learning. This method reduced the computational complexity
of their model compared with the standalone 3-D-CNN model.
Yu et al. [34] designed a lightweight 2-D-CNN network that
used multiple 2-D convolution kernels with a kernel size of
1 × 1, and the designed network demonstrated satisfactory per-
formance for HSI classification. With the popularity of CNN,
a variety of convolutional kernels and network structures have
been designed, which can be combined with other networks
to form excellent feature extraction modules to maintain the
competitiveness of CNN-based methods.

Due to the proposed frameworks of ResNet [35] and
DenseNet [36], skip connection and dense connection have
had a great influence on the connection modes of the existing
deep network structures. Subsequently, these connection

methods have been incorporated into CNN-based networks.
Zhong et al. [37] adopted skip connection for every two 2-
D-CNN layers and explored the impact of network depth
and batch normalization on classification performance of the
model. Based on the residual block of PyramidNet’s pyramid
structure [38], Paoletti et al. [39] designed a novel deep
CNN to enhance the diversity of high-level spatial–spectral
features. Wang et al. [40] proposed a fast dense spatial–spectral
convolution network which applied the dense spectral block
and dense spatial block to separately extract spectral and
spatial features. In addition, the attention mechanisms [41],
[42], [43], [44], including soft attention, hard attention, and
self-attention, have been used in combination with CNNs for
classification tasks and have achieved competitive results [45],
[46], [47]. Mou and Zhu [48] designed a spectral attention
module to improve model performance of feature extraction
by discriminating the importance of different spectral bands.
Hang et al. [49] developed a spectral attention subnetwork and
a spatial attention subnetwork to assist the traditional CNN
models in extracting the prior information of input samples
and obtained superior performance. Zhu et al. [50] introduced
a feedback attention module to improve the perception of
attention maps. However, it is difficult for CNN-based models
to capture the global relationship between features due to the
fixed size of receptive field.

In recent years, the transformer, which is initially pro-
posed in the field of natural language processing (NLP)
based on attention mechanisms, has received great attention.
Researchers have also introduced the transformer into HSI
classification. Hong et al. [51] analyzed the difference between
transformer and some classical neural networks in detail
and developed a vision transformer (ViT)-based Spectral-
Former for spectral information learning. Zhong et al. [52]
proposed a spatial–spectral transformer (SST) network and
a model structure search framework for HSI classifica-
tion. Sun et al. [53] designed a Gaussian weighted feature
tokenizer in the spectral–spatial feature tokenization trans-
former (SSFTT) to transform the features extracted by CNN.
Xue et al. [54] proposed a local transformer network based on
spatial partitioning and reconstruction, which mainly consists
of a spatial partition restore (SPR) module. Yu et al. [55]
proposed a multilevel spectral–spatial transformer network
(MSTNet) and aggregated multilevel features through a well-
designed decoder. Tu et al. [56] developed a transformer-based
framework called local semantic feature aggregation-based
transformer (LSFAT) for long-range dependencies represen-
tation of multiscale features. Zou et al. [57] designed a
local-enhanced spectral–spatial transformer (LESSFormer) to
acquire adaptive spectral–spatial tokens and enhance represen-
tation capabilities. Song et al. [58] proposed a novel bottleneck
SST (BS2T) to capture the long-range global dependencies
of HSI pixels and extract the local–global features. The
above-mentioned models demonstrate the effectiveness of
transformer-based networks for HSI classification. However,
transformer-based models still face challenges, including a
large number of model parameters and the high requirement
for training samples. In addition, current models lack sufficient
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exploration of self-supervised methods in the pretraining task
to fully use the information from unlabeled samples.

In this article, we aim to develop a center-masked trans-
former (CMT) approach for improving the performance of
transformer-based networks in the HSI classification task with
limited samples. The CMT approach updates the embedding
method and adds a self-supervised pretraining task into the
transformer for the first time. On one hand, inspired by
the divide-and-conquer algorithm, we design a local-to-global
token embedding (L2GTE) framework for HSI datasets, which
captures better embedding features. Based on this frame-
work, a multiscale embedding module is built and operated
in parallel to obtain finer local embedding tokens for each
subband. These local embedding tokens are then concate-
nated to achieve the global embedding tokens. On the other
hand, a regularized center-masked pretraining (RCPT) task is
introduced by combining a generative self-supervised learning
method based on sample encoding-reconstruction with a mask
image model (MIM) [59], which is used to aid the network
in effectively using the information of unlabeled samples.
More specifically, the main contributions of this article are
summarized as follows.

1) First, considering that each spectral interval has unique
spatial–spectral characteristics, a L2GTE framework is
designed in our CMT approach for HSI embedding to
extract the better local representation using an individ-
ual embedding module for each subband. Specifically,
the feature embedding task in the transformer-based
network is divided into several embedding subtasks
for the subbands of HSI and each subband adopts its
own embedding module to learn local spatial–spectral
feature, which not only improves the embedding quality
but also reduces the requirements in model size and
training sample. Then, to obtain the global embedding
of samples, we concatenate the local embedding results
of the subbands based on the spatial dimension.

2) Second, to meet the feature extraction of HSI datasets
with different spatial distribution and resolutions, a mul-
tiscale convolutional token embedding (MCTE) module
is proposed for each subband, which consists of three
embedding branches at the small, medium, and large
scales. The MCTE can obtain better local embedding
tokens of the subbands to improve the robustness of
the proposed CMT approach and make the model
performance more stable.

3) Third, to fully use the information of a large number
of unlabeled samples in the HSI datasets, an RCPT
is proposed. We use a learnable vector to mask the
center token and reconstruct the spectrum of the center
pixel in the decoder to effectively learn the contextual
relationship between the center pixel and its neighbors
without labeled samples. Furthermore, an auxiliary task
based on sample encoding-reconstruction is used to
prevent model collapse and ensure model stability in
the pretraining process.

4) Finally, a series of comparison and ablation experiments
are designed and conducted to demonstrate the effec-
tiveness of the proposed CMT approach on five public

HSI datasets. The results of the comparison experiments
show that our CMT approach achieves excellent perfor-
mance for HSI classification with insufficient training
samples, and the results of the ablation experiments
demonstrate the effectiveness of our proposed backbone
network and pretraining method.

The rest of this article is organized as follows. Section II
briefly introduces the related works of ViT and self-supervised
learning methods. Section III provides a detailed description
of the proposed CMT approach. The used HSI datasets and
the experimental result analysis are presented in Section IV.
Finally, the conclusions are summarized in Section V.

II. RELATED WORKS

In this section, we introduce the background of the ViT
and self-supervised learning methods, which are related to our
proposed CMT approach.

A. Vision Transformer

Before the advent of the transformer, RNNs are widely used
to process sequence data because their network structure can
record short-term memory and excavate the contextual infor-
mation of the sequence effectively. However, RNNs not only
have a disadvantage in handling long sequences but also are
complex to perform efficient parallel computations. To a cer-
tain extent, the LSTM network alleviates the problem in RNNs
of capturing long-range dependencies, but the shortcomings
of computational complexity and time-consuming still exist
in some scenarios. With the emergence of transformer, trans-
former networks greatly tackle the above-mentioned problems
and dominate tasks in the field of NLP, and the characteristic
without inductive bias endows the networks with great poten-
tial and have a profound influence on the development of CV.

ViT is the first work to introduce the transformer into CV,
which divides the image into equal-sized square regions and
achieves the tokens via a linear embedding, eliminating the
need for deep CNNs to capture the global receptive field. After
that, the transformer models have been applied in the study of
HSI classification by various researchers, such as the Spectral-
Former by Hong et al. [51], the SSFTT by Sun et al. [53], the
MSTNet by Yu et al. [55], the LESSFormer by Zou et al. [57],
the global–local 3-D convolutional transformer (GTCT) by
Qi et al. [60], and the SST by He et al. [61]. Although some
good achievements have been made in these studies, there are
still challenges in achieving better classification performance
using transformer models. Many of these models adopt a
general framework that combines CNN and transformer with
a large number of parameters to strike a balance between
local and global feature extraction. In addition, an adequate
amount of training samples is relied on to achieve better
results. In contrast, our work mainly focuses on the design of
lightweight structures and the use of limited samples to achieve
excellent performance in HSI classification. Therefore, the
proposed CMT approach takes a step further in the embedding
framework and effectively reduces the number of parameters
in the feature extraction module for limited samples, which is
more suitable for real-world application scenarios.
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B. Self-Supervised Learning Method

It is well-known that the performance of an HSI classifica-
tion model is closely related to the size of the training samples,
and a model with more labeled samples usually achieves
better training results. However, sample annotation in HSI
is time-consuming and labor-intensive. To address this issue,
effectively capturing and fully using the features of unlabeled
samples can be considered in the pretraining process, and
self-supervised learning provides a good solution for this. Self-
supervised learning can construct pseudolabels based on the
data itself, which can be used to establish a pretext to learn
feature representation of samples without labels. So far, the
methods of self-supervised learning, such as mask language
model (BERT) and generative pretraining (GPT), have made
breakthrough progress in NLP, and the development in the CV
domain is slightly behind that in NLP.

In recent years, the most mainstream self-supervised
learning includes contrastive learning (CL) and MIM. The
representative CL-based methods are the Moco series [62],
[63], [64] and the Simclr series [65], [66], and the classical
MIM-based methods mainly involve MAE [59], BEIT [67],
etc. For HSI classification, CL can directly use the input
data to construct positive samples and negative samples by
data augmentation and adopt a pretext task to automatically
extract the discriminative features of samples for pretraining,
but there is no very practical and universal augmentation
strategy for HSI datasets due to the unrich spatial information
of HSI compared with that of RGB images. In contrast,
MIM is a more advantageous framework because HSI has
the characteristics of images and the pseudolabels of MIM
can be constructed by dividing the input data into several
different subsets. Therefore, based on the MIM framework,
we design a self-supervised pretraining task to effectively
capture the features from unlabeled samples in HSI datasets,
and an auxiliary task based on sample reconstruction (SR)
is used as a regularization term to prevent model collapse
during the pretraining process. Our work represents a pioneer-
ing exploration of transformer-based self-supervised learning
methods for HSI classification.

III. METHODOLOGY

In this section, the proposed CMT approach for HSI clas-
sification is depicted and shown in Fig. 1, which improves
the transformer-based methods from two aspects: a multi-
scale convolutional transformer for embedding task and a
regularized center-mask pretraining (RCPT) task for self-
supervised pretraining. Specifically, CMT mainly consists
of an L2GTE framework, an MCTE module, the standard
transformer encoder (TE), and an RCPT task. The L2GTE
framework primarily divides the sample embedding task into
several subtasks to acquire multiscale local embedding tokens
individually using the MCTE module (Fig. 2), which are then
combined through concatenation to obtain global embedding
tokens. The RCPT task, including a center pixel reconstruction
(CRP) subtask and an SR subtask, can effectively learn the
dependencies between the central object and its neighboring
objects. The summary of key mathematical symbols used for
the CMT approach is presented in nomenclature.

A. L2GTE Framework

HSIs are quite different from RGB images in both spectral
and spatial distributions. When the RGB image embedding
method in the transformer is directly applied to extract fea-
tures of HSIs for classification, the model performance is
usually poor, and even worse than that of some state-of-
the-art CNN-based methods. This may be because there are
fewer labeled samples for training and HSIs have less spatial
information compared with RGB images. Therefore, a more
suitable embedding method is needed for HSI classification,
especially in the case of insufficient labeled samples. In this
article, an L2GTE framework for HSI datasets is proposed.
First, we introduce a partitioning strategy in the L2GTE
framework to divide the feature embedding task into several
equivalent subtasks based on the HSI spectral dimensions.
Then, the subbands with equal number of spectral bands are
fed into embedding modules to obtain the corresponding local
spatial–spectral representation, i.e., the local token. Finally, the
local tokens extracted by the parallel embedding modules are
concatenated together to achieve the global token.

In particular, let I ∈ RH×W×D denote the original HSI,
where H is the height, W is the width, and D is the number
of spectral bands. Considering that the feature extraction
will lead to an increase in the number of model parameters
and the spectral redundancy phenomenon is common in the
original HSI, so principal components analysis (PCA) is
adopted to reduce computational load and spectral dimen-
sion. The obtained dimension reduction result is denoted as
H ∈ RH×W×K , where K is the number of channels after
dimensionality reduction. For an input sample patch X ∈

Rh×w×K , where h and w are the height and width of the
input sample patch, the partitioning strategy is used to evenly
divide the spectral channels of the input patch into n con-
secutive subbands. Then, the achieved result can be denoted
as X ′

= [X 1,s
1 ,X s+1,2s

2 , . . . ,X (n−1)s+1,ns
n ] ∈ Rn×h×w×s , where

s is the number of channels contained in each subband, and
X (i−1)s+1,is

i ∈ Rh×w×s is the subband with the channel interval
between (i − 1)s + 1 and is (i = 1, 2, . . . , n), and n = K/s.
Finally, the local tokens are extracted from these subbands by
the corresponding embedding modules. This process can be
formulated as follows:

Tlocal
i = Embi

(
X (i−1)s+1,is

i

)
(i = 1, 2, . . . , n) (1)

where Tlocal
i ∈ Rh×w×z represents the local feature extracted

from the i th subband, and Embi(·) is the feature extraction
process in the i th embedding module, which is performed by
parallel embedding modules.

Thus, the local features of the subbands in a patch X ′

can be described as Tlocal
= [Tlocal

1 , Tlocal
2 , . . . , Tlocal

n ], Tlocal
∈

Rn×hw×z . The global token Tglobal
∈ Rhw×embdim is obtained by

concatenating these local tokens along the feature dimension,
which is represented as follows:

Tglobal
= UnFold

(
Concat

(
Tlocal

1 , Tlocal
2 , . . . , Tlocal

n

))
(2)

where Concat(·) is the concatenation operation along the
feature dimension, UnFold(·) denotes a spatial dimensional
spreading operation, and embdim is the feature dimension of
the global token.
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Fig. 1. Flowchart of the proposed CMT approach for HSI classification.

Fig. 2. Structure of the designed MCTE module.

B. MCTE Module

To extract better spatial–spectral features from HSIs with
insufficient training samples, we develop an MCTE module for
the subband, which includes three branches of linear embed-
ding, 2-D convolutional embedding, and 3-D convolutional
embedding at different spatial scales (Fig. 2). Specifically, the
linear embedding is applied to extract spectral features at the
small scale, the 2-D convolutional layers with kernel size 3 and
kernel size 1 are mainly used for spatial information extraction
at the medium scale, and two 3-D convolutional layers are also
used to obtain spatial information at the large scale.

For an input subband X (i−1)s+1,is
i ∈ Rh×w×K , the spectral

information of each pixel is first encoded using a linear
embedding at the small scale in the MCTE module, and the
process is shown in the following equation:

E small
i = Lineari

(
X (i−1)s+1,is

i

)
(3)

where E small
i ∈ Rh×w×z and Lineari (·) represents the linear

embedding function corresponding to the i th subband at the
small scale.

For the medium scale in the MCTE module, the process of
feature embedding is shown as follows:

F spa
i = Conv2Di

1

(
X (i−1)s+1,is

i

)
(4)

Emidium
i = Conv2Di

2

(
F spa

i

)
(5)

where F spa
i ∈ Rh×w×m , Emidium

i ∈ Rh×w×z , m denotes the
number of channels of the feature, and Conv2Di

1(·) and
Conv2Di

2(·) denote 2-D convolution operations with the kernel
sizes of 3 × 3 and 1 × 1 on the i th subband, respectively.

For the large scale in the MCTE module, the spatial–spectral
embedding feature is obtained by performing two 3-D convo-
lution operations. The process can be expressed as follows:

F ss
i = BN

(
ReLU

(
Conv3Di

1

(
X (i−1)s+1,is

i

)))
(6)

F ss
i

′
= BN

(
ReLU

(
Conv3Di

2

(
F ss

i

)))
(7)

E large
i = ReLU

(
Conv2Di(F ss′

i

)))
(8)

where E large
i ∈ Rh×w×z , Conv3Di (·) and Conv2Di (·) represent

the 3-D convolution operation and 2-D convolution operation
with the kernel sizes of 3 × 3 × 3 and 1 × 1 on the i th
subband, respectively, ReLU(·) represents the ReLU activation
function, and BN(·) denotes the batch normalization function.

Finally, the three embedding features are fused to obtain the
local token corresponding to the i th subband, and the fusion
process is shown as follows:

Emix
i = Conv1×1

(
E small

i + Emidium
i + E large

i

)
(9)

Tlocal
i = UnFold

(
BN

(
ReLU

(
Emix

i

)))
(10)

where the definitions of Conv1×1(·), ReLU(·), BN(·), and
UnFold(·) are consistent with the above.

C. Transformer Encoder

A standard TE is shown in Fig. 3 [68], which is mainly
composed of the position encoding, multihead attention, and
feedforward layers. The calculation process can be expressed
as follows:

E = Emb(X) (11)
z0 = [xclass; E] + Epos (12)
z′

ℓ = MSA(LN(zℓ−1)) + zℓ−1 ℓ = 1, . . . , L (13)

zℓ = MLP
(
LN

(
z′

ℓ

))
+ z′

ℓ ℓ = 1, . . . , L (14)
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Fig. 3. Detailed structure of a standard TE.

y = LN
(
z0

L

)
(15)

where X denotes the input, Emb(·) denotes the embedding
function, which in ViT is the linear projection, LN(·) denotes
the LayerNorm function, MSA(·) denotes the multihead atten-
tion function, and MLP(·) denotes the multilayer perceptron
function. It is worth noting that the position encoding and
learnable class tokens are removed in our TE to reduce the
model burden in the case of small samples, and the multiscale
embedding features which are extracted by the convolution
operation are directly fed into the module.

As shown in Fig. 3, the multihead attention extends the net-
work ability to focus on the different locations with each head
corresponding to a subrepresentation, which has a stronger
feature modeling capability than a single head. Specifically,
the scaled dot product attention is used in the transformer,
and the computational process can be represented as follows:

Attention(Q, K, V) = Softmax
(

QK⊤

√
dk

)
V (16)

where Q, K and V are the learnable parameter matrices,
Softmax(·) is the activation function, and (dk)

1/2 is the param-
eter used to keep the gradient smooth.

The calculation process of the multihead attention can be
expressed as follows:

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(17)

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (18)

where WQ
i ∈ Rdmodels×dk , WK

i ∈ Rdmodels×dk , WV
i ∈ Rdmodels×dv ,

and WO
∈ Rdmodels×hdv are parameter matrices, and h is the

number of heads and the value is set to 4 in this article. dmodels
is the dimension of input embedding, and the value of dv and
dk equals to (dmodels/h).

After that, an average pooling layer is applied to avoid infor-
mation redundancy and achieve feature compression. Finally,
the HSI classification results are obtained through a three-layer
MLP head.

D. RCPT Task

Fig. 4 shows the flowchart of our proposed RCPT task.
In the pretraining process, the RCPT task consists of two
subtasks of the SR and the CRP. Considering the spatial distri-
bution characteristics of HSI samples, the embedding token is
generated from the center pixel of the training samples using
the masking method. The encoder is adopted basing on our

proposed CMT network without the classification layer, and
the used decoder is composed of two standard TEs. In general,
our RCPT is a multitask reconstruction method, which can
reconstruct the center pixel as efficiently as possible and take
into account the reconstruction of the whole sample. The
CPR subtask can make the model better learn the relationship
between the center pixel and adjacent pixels without labels.
The SR subtask can be used as a regularization item and
encourage the model to capture the global features of HSI
samples, which can effectively prevent model collapse.

More specifically, given an input sample X with a center
pixel vector Pcenter, the embedding token of the input sample
is Tglobal. Let T̃ = [T̃1, T̃2, . . . , T̃center, . . . , T̃m] denote the
sequence of embeddings after spatial dimensional flattening of
Tglobal, where T̃ ∈ Rm×d , T̃i ∈ R1×d , and m = h × w. For the
SR subtask, the T̃center is replaced by a learnable vector Vlearn,
resulting in a new sequence T̃′

= [T̃1, T̃2, . . . , Vlearn, . . . , T̃m].
Then, the masked sequence T̃′ is fed into the decoder. For the
CRP subtask, an MLP head is performed to obtain the recon-
struction result X = [P1, P2, . . . , Pcenter, . . . , Pm], where P i

is the pixel reconstruction result corresponding to T̃i . Finally,
the loss function is defined to make the input Pcenter and the
output Pcenter as similar as possible, and it is expressed as
follows:

Lcenter = MSE
(
Pcenter, Pcenter

)
(19)

Lsample = MSE
(
X ,X

)
(20)

L total = Lcenter + Lsample. (21)

where MSE(·) denotes the mean squared error function, Lcenter
is the value of the central pixel reconstruction loss, and Lsample
is the value of the SR loss.

IV. EXPERIMENTS

A. Hyperspectral Datasets

To evaluate the effectiveness and robustness of our proposed
CMT method, a series of comparative and ablation experi-
ments are conducted on the five public HSI datasets which
were acquired from different scenes. The detailed description
of the datasets is as follows.

1) Indian Pines Dataset: The Indian Pines dataset was
collected by the AVIRIS sensor in Northwest Indiana, USA,
in 1992, which contains 10 249 labeled samples with 16 land-
cover classes. The spatial resolution is 20 m for each pixel and
the spatial dimension is 145 × 145 pixels. The wavelengths
range from 0.4 to 2.5µ m, including 224 spectral bands.
After removing 24 noisy bands and water absorption bands,
200 bands are retained in the experiment. Fig. 5 shows the
false color image and ground-truth map of the dataset, and
the detailed information is presented in Table I.

2) Houston 2013 Dataset: The Houston 2013 dataset was
acquired in the area of the University of Houston, Texas,
USA, by the ITRES CASI-1500 sensor. It includes 15 land-
cover classes and 15 029 labeled samples with a 2.5-m spatial
resolution. There are 144 spectral bands ranging from 0.38 to
1.05 µm, and each band covers 349 × 1905 pixels. The false
color image and ground-truth map of the dataset are shown
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Fig. 4. Flowchart of the proposed RCPT task.

Fig. 5. (a) False color image. (b) Ground-truth map. (c) Labels of the Indian
Pines dataset.

in Fig. 6, and the specific information is given in detail in
Table II.

3) Pavia University Dataset: The Pavia University dataset
was gathered by the ROSIS-03 sensor over the Pavia Uni-
versity, Northern Italy, in 2003. This dataset consists of
42 776 labeled pixels from nine land-cover classes. The spatial
dimension is 610 × 340 pixels with a high spatial resolution
of 1.3 m/pixel. After 12 noisy bands are discarded from the
original 115 spectral bands, the remaining 103 bands are used
for classification. Fig. 7 shows the false color image and
ground-truth map of the dataset, and the detailed information
is presented in Table III.

4) YRE Dataset: The yellow river estuary (YRE) dataset
was captured by the Gaofen-5 satellite over the YRE region
of Shandong Province, China. The dataset contains 77 937
labeled samples with 20 land-cover classes, most of which
are wetland plants. The image has a spatial dimension of
1400 × 1400 pixels and a spatial resolution of 30 m for each
pixel. After removing noisy bands, 180 bands from the original
spectral bands are selected and processed in the experiment.

TABLE I
NUMBER OF TRAINING AND TESTING SAMPLES ON THE

INDIAN PINES DATASET

The false color image and ground-truth map of the dataset are
shown in Fig. 8, and the specific information is given in detail
in Table IV.

5) Salinas Dataset: The Salinas dataset was collected by
the AVIRIS sensor in the Salinas Valley, California, USA.
There are 54 129 labeled samples classified into 16 land-cover
classes. The image consists of 512 × 217 pixels with a spatial
resolution of 3.7 m/pixel and 224 spectral bands. After remov-
ing noisy bands, 204 bands are reserved in the experiment.
Fig. 9 shows the false color image and ground-truth map of the
dataset, and the detailed information is presented in Table V.

B. Experimental Setup

1) Hyperparameters Setting: In this article, the number
of channels (K ) after PCA dimensionality reduction is set
to 80 which captures most of the information in the HSI
datasets. Regarding the number of subband and patch size
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Fig. 6. (a) False color image. (b) Ground-truth map. (c) Labels of the Houston
2013 dataset.

TABLE II
NUMBER OF TRAINING AND TESTING SAMPLES

ON THE HOUSTON 2013 DATASET

Fig. 7. (a) False color image. (b) Ground-truth map. (c) Labels of the Pavia
University dataset.

for an input sample, a series of quantitative experiments
are conducted to study parameter sensitivity, and the overall
classification accuracy is shown in Fig. 10. In general, a large
input sample size would increase the computational load,
while a small size may not contain the sufficient information.
Therefore, the parameters of subband number and patch size
are determined by balancing the computational complexity and

TABLE III
NUMBER OF TRAINING AND TESTING SAMPLES ON THE

PAVIA UNIVERSITY DATASET

Fig. 8. (a) False color image. (b) Ground-truth map. (c) Labels of the YRE
dataset.

TABLE IV
NUMBER OF TRAINING AND TESTING SAMPLES ON THE YRE DATASET

the spectral–spatial information. The patch size of height (h)
and width (w) is set to 13, the number of subbands (n) is set
to 8, and each subband contains ten spectral channels. The
embedding size of each token is set to 128, the hidden layer
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Fig. 9. (a) False color image. (b) Ground-truth map. (c) Labels of the Salinas
dataset.

TABLE V
NUMBER OF TRAINING AND TESTING SAMPLES ON

THE SALINAS DATASET

Fig. 10. Classification accuracy for parameter sensitivity of (a) subband
number and (b) patch size.

dimension is 64, the number of attention heads is four, and the
number of encoders is two. Taking into account of the training
stability and convergence speed, the learning rate for model
training is set to 0.001, and Adam is adopted as the gradient
optimizer.

2) Evaluation Metrics and Running Platforms: To quan-
titatively compare the effectiveness of the proposed CMT
approach and other methods, three metrics of overall accuracy
(OA), average accuracy (AA), and kappa coefficient (κ) are
calculated to evaluate the classification results of different
methods. Moreover, to reduce the errors caused by random
sample selection, each experiment is repeated ten times. All

the experiments are conducted on the computer with an Intel
Xeon Platinum 8260 CPU, a 64-GB RAM, and an NVIDIA
Tesla P100-16GB GPU.

3) Comparison Methods: To comprehensively evaluate the
performance of our proposed method for HSI classification,
three CNN-based models and three transformer-based models
are selected for comparative experiments, which are the state-
of-the-art methods and described as follows.

1) CNNHSI: The CNN architecture used several 2-D con-
volution layers and learned features automatically with
the limited training samples for HSI classification [34].

2) HybridSN: The 3-D-CNN and 2-D-CNN were designed
to extract hierarchical spatial–spectral features to obtain
high-level sample representations [33].

3) SPRN: A series of parallel CNNs were adopted to extract
spectral–spatial features from different subbands of HSI
spectral bands [69].

4) SpectralFomer: This is a highly flexible backbone net-
work with the ability to both pixelwise and patchwise
inputs, and a soft residual structure was designed to
effectively reduce the information loss during feature
transformation [51].

5) SSFTT: The CNN embedding module was applied
for shallow spectral–spatial feature extraction, and a
Gaussian weighted feature tokenizer was introduced
to transform the shallow features into deep semantic
features [53].

6) SPRLT: The local transformer with a spatial partitioning
restore module was devised to dynamically obtain the
spatial attention weights of samples by measuring the
similarity between pixels [54].

It is worth noting that the model structures and parameter
settings of the compared methods follow their open source
codes or the corresponding original papers.

C. Ablation Analysis

To verify the effectiveness of our proposed method and
the rationality of the model structure design, the ablation
experiments are carried out on the L2GTE framework, the
MCTE module, and the RCPT task on five public HSI datasets.
The specific analysis is as follows.

1) L2GTE Framework: To verify the effectiveness of
L2GTE framework, we compare the model performance with
and without the L2GTE framework for feature extraction
by the same MCTE module and RCPT task. The model
embeddings for two experiments are as follows: all the bands
of HSI dataset versus subbands of the HSI dataset obtained
using the L2GTE framework. The classification results of
L2GTE ablation experiment are shown in Table VI. Our pro-
posed L2GTE framework with subband embedding effectively
improves the model performance on each dataset, especially on
the Indian Pines and Pavia University datasets with an increase
of 3.18% and 3.92% on the classification accuracy, respec-
tively. In addition, the accuracy on the other three datasets
improves by 1%–2%. The results show that compared with all
the bands’ embedding, more spatial–spectral information can
be captured from multiple subbands by the MCTE module to
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TABLE VI
ABLATION RESULTS OF THE L2GTE FRAMEWORK

ON THE FIVE DATASETS

obtain the discriminative features of ground objects for HSI
classification, illustrating the superiority and reasonableness of
subband embedding in the L2GTE framework.

2) MCTE Module: In the ablation experiments of the
MCTE module, we compare and evaluate the model per-
formance of single-scale and multiscale embedding modules
for feature extraction under the same L2GTE framework
and RCPT task. This includes three individual single-branch
experiments conducted at small, medium, and large scales, and
an experiment using our proposed MCTE module. The experi-
mental results are shown in Table VII. The comparison results
show that the classification performance of the single branch
at the three scales is inconsistent on the different datasets.
For the small-scale branch, the model performs well on the
Indian Pines, Pavia University, and Salinas datasets, while the
accuracy is relatively poor on the Houston 2013 and YRE
datasets. On the contrary, the medium-scale branch achieves
better performance on the Houston 2013 and YRE datasets,
and the large-scale branch performs better on the Houston
2013, YRE, and Salinas datasets. Our proposed multibranch
MCTE module well integrates the advantages of each branch
and achieves higher classification accuracy than the single-
branch module, i.e., an increase of 3.22% on the Houston
2013 dataset and an improvement of 4.07% on the Pavia
University dataset, which proves that our MCTE module is
effective and necessary for HSI classification.

3) RCPT Task: Our designed RCPT task includes two
subtasks of the SR and the CPR. To verify the effectiveness
of the RCPT task, the SR subtask and the CPR subtask are
performed independently to evaluate the contribution to HSI
classification accuracy under the same L2GTE framework and
MCTE module. All the experiments are conducted using five
training samples per class for fine-tuning, and the results
are listed in Table VIII. It can be seen that when the SR
subtask is used individually, the classification accuracy has an
increase of 2.18% on the Pavia University dataset, while the
accuracy on the YRE dataset is not significantly increased.
For the CPR subtask, the accuracy improves by about 2%
on the Indian Pines and Houston 2013 datasets, but the
improvement is insignificant on the Salinas dataset. However,
the classification performance of our proposed RCPT task is
significantly improved on the five datasets, especially on the
Indian Pines dataset with an increase of 3.49%. This may
be attributed to the fact that our proposed pretraining task
can effectively capture the relationship between the central
ground objects and their neighbors in self-supervised learning,

TABLE VII
ABLATION RESULTS OF THE MCTE MODULE ON THE FIVE

DATASETS (NOTE: s IS FOR THE SMALL SCALE, m
IS FOR THE MEDIUM SCALE, AND l IS FOR

THE LARGE SCALE)

TABLE VIII
ABLATION RESULTS OF THE RCPT TASK ON THE

FIVE DATASETS

leading to an effective performance improvement for HSI
classification.

D. Classification Results of Comparative Experiments

With respect to the division of training set and testing
set, a small fixed number of training samples is randomly
selected to train all the models, and the remaining samples
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TABLE IX
CLASSIFICATION ACCURACY (%) AND KAPPA MEASURE FOR

THE INDIAN PINES DATASET

are the testing set. For the YRE dataset, ten samples are
selected for each category as the training set. For the other
four datasets, the number of training samples for each class
is five. The specific information is shown in Tables I–V.
In addition, the classification maps of the Houston 2013 and
YRE datasets show the entire scene of the HSIs, and the other
three datasets, Indian Pines, Pavia University, and Salinas,
display the classification results of labeled regions in the HSIs.
The detailed result analysis is as follows.

1) Indian Pines Dataset: Table IX exhibits the classification
accuracy of the Indian pines dataset, and our proposed CMT
approach has strong competitiveness and the best classification
performance in the case of small samples. There are ten
classes of ground objects which achieved the highest clas-
sification accuracy by our CMT method, and the OA and
AA are 77.34% and 86.07% which are 7.75%–32.68% and
4.82%–32.33% higher than the compared ones, respectively.
Among transformer-based methods, the SSFTT model has the
second highest accuracy, while the SF model has the worst
classification accuracy, which may be caused by the limited
training samples. Among the CNN-based methods, the clas-
sification performance of CNNHSI and SPRN is relatively
similar, and the classification accuracy is higher than that of
the HybirdSN model. Fig. 11 shows the classification maps
of seven methods on the Indian Pines dataset, and our CMT
approach is more advantageous than the others, which better
shows the distribution of ground objects and is closer to the
ground truth. The classification results of HybridSN and SF
are the worst and many ground objects have misclassification
errors, which may be related to the poor feature learning ability
of the models in the case of small samples. In addition, our
CMT approach successfully identifies the wheat type (class
10) in most areas, while other methods generally misclassify
the wheat class as the woods type (class 11) in the center of
the classification map.

2) Houston 2013 Dataset: The Houston 2013 dataset is a
large scene dataset, and only some areas are labeled as ground

Fig. 11. Classification maps on the Indian Pines dataset of (a) ground truth,
(b) CNNHSI (67.31%), (c) HybridSN (44.60%), (d) SPRN (69.40%), (e) SF
(46.54%), (f) SSFTT (69.59%), (g) SPRLT (65.32%), and (h) ours (77.34%).

TABLE X
CLASSIFICATION ACCURACY (%) AND KAPPA MEASURE FOR THE

HOUSTON 2013 DATASET

truth [Fig. 12(a)]. The classification results and classification
maps of the Houston 2013 dataset are shown in Table X
and Fig. 12. Our approach achieves the highest classification
accuracy on eight types of ground objects and has the best
performance with the OA of 82.14%, AA of 84.19%, and κ

of 80.70. The OA values of the compared methods vary from
62.55% to 77.70%, and the κ values range from 59.60 to 75.90.
The HybridSN and SF have the worst classification accuracy,
which may be due to the fact that the model performance
cannot be fully used in the case of small samples. The clas-
sification maps show that our proposed CMT approach better
exhibits the spatial distribution of urban pattern, especially
on the types of highway and railway, while those regions
identified by other methods usually expand the real areas
occupied by such ground objects, resulting in relatively large
misclassifications.

3) Pavia University Dataset: The classification accuracy
and classification maps for the Pavia University dataset are
shown in Table XI and Fig. 13. Our CMT approach demon-
strates the superior performance and achieves the best accuracy
with an OA of 83.28%, which is 2.77%–19.21% higher
than other methods. The SSFTT obtains the second best
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Fig. 12. Classification maps on the Houston 2013 dataset of (a) ground truth, (b) CNNHSI (74.86%), (c) HybridSN (66.09%), (d) SPRN (76.96%), (e) SF
(62.55%), (f) SSFTT (77.70%), (g) SPRLT (75.65%), and (h) ours (82.14%).

TABLE XI
CLASSIFICATION ACCURACY (%) AND KAPPA MEASURE FOR THE

PAVIA UNIVERSITY DATASET

classification results, followed by SPRN and SPRLT, while the
HybridSN has the worst classification accuracy. Specifically,
the CMT approach achieves the best results in types of
meadows, painted metal sheets, and bitument, and clearly
restores the outline of asphalt. Similarly, the CNNHSI has
the highest accuracy in the identification of gravel, trees, and
painted metal sheets. In general, most methods can better
identify painted metal sheets and shadows, but the classifi-
cation accuracy for bare soil is relatively poor, ranging from
29.95% of SF to 67.47% of SSFTT. In addition, there is a
large performance difference in distinguishing self-blocking
bricks, i.e., the accuracy of 84.35% and 42,61% for SPRLT
and HybridSN, respectively.

4) YRE Dataset: The YRE dataset is also a large scene
dataset, and Table XII and Fig. 14 show the specific classifi-
cation accuracy and classification maps. Except for CNNHSI
and HyBridSN, the classification accuracy of other methods is
higher than 87.00%. Our CMT approach has the best accuracy
with an OA of 91.38%, which is 2.31%–18.42% higher

Fig. 13. Classification maps on the Pavia University dataset by (a) ground
truth, (b) CNNHSI (73.27%), (c) HybridSN (64.07%), (d) SPRN (78.77%),
(e) SF (70.57%), (f) SSFTT (80.51%), (g) SPRLT (78.23%), and (h) ours
(83.28%).

than that of the compared methods. The transformer-based
methods achieve more satisfactory classification results than
the CNN-based methods, i.e., the OA of 89.07% of SSFTT
and the OA of 72.96% of CNNHSI, which may be attributed
to the powerful context capture ability of the transformer
module to better distinguish the ground objects in the complex
scenes. From the classification maps, we can see that the
results of the SPRN and SPRLT methods show the smoother
feature distribution of ground objects, followed by the maps of
SSFTT and our approach. However, the obvious smearing phe-
nomenon occurs in the classification maps of the CNNHSI and
HyBridSN methods, which may be related to the CNN-based
structure.
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TABLE XII
CLASSIFICATION ACCURACY (%) AND KAPPA MEASURE FOR

THE YRE DATASET

Fig. 14. Classification maps on the YRE dataset by (a) ground truth,
(b) CNNHSI (72.96%), (c) HybridSN (74.86%), (d) SPRN (89.05%), (e) SF
(87.78%), (f) SSFTT (89.07%), (g) SPRLT (88.57%), and (h) ours (91.38%).

5) Salinas Dataset: The classification results and classifi-
cation maps for the Salinas dataset are shown in Table XIII
and Fig. 15. The classification accuracy of all the methods is
higher than 80.00%, probably because the ground objects in
the Salinas dataset are mainly distributed in blocks with less
interference between different classes, and the spectra of the
same ground objects have high similarity. Our CMT approach
still achieves the best accuracy with an OA of 91.82% and
seven types of ground objects have the highest classification
accuracy, followed by the methods of SSFTT, CNNHSI, and
SPRN. However, the accuracy of the other three methods of
HybridSN, SF, and SPRLT has a large gap with that of our
approach, and the OAs are 10.16%, 11.44%, and 7.85% lower
compared with our OA, which may be because the models
struggle to handle the small samples for HSI classification.
From the classification maps, all the methods have a certain
degree of misclassification on the ground objects of grapes
untrained (class 8) and vineyard untrained (class 15), since
there are great similarities between those two objects, and the

TABLE XIII
CLASSIFICATION ACCURACY (%) AND KAPPA MEASURE

FOR THE SALINAS DATASET

Fig. 15. Classification maps on the Salinas dataset by (a) ground truth,
(b) CNNHSI (88.61%), (c) HybridSN (81.66%), (d) SPRN (87.46%), (e) SF
(80.38%), (f) SSFTT (91.07%), (g) SPRLT (83.95%), and (h) ours (91.82%).

methods are difficult to clearly distinguish their discriminative
features when the training samples are insufficient.

E. Complexity Analysis

To further demonstrate the superiority and effectiveness of
our proposed CMT approach, we present the computational
complexity of the comparative experiments. The evaluation
metrics include the running time and the number of model
parameters. For the running time, we aggregate the model
training and testing times as an evaluation metric, considering
the limited number of training samples used for each model.
The results are displayed in Table XIV. In terms of running
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Fig. 16. Classification accuracy versus different percentages of training samples per class. (a) Indian Pines, (b) Houston 2013, and (c) Pavia University.

TABLE XIV
RUNNING TIME (S) AND MODEL PARAMETERS OF DIFFERENT METHODS

time, the CNN-based methods generally require less time
compared with the transformer-based methods. Specifically,
the CNNHSI method has the shortest running time, ranging
from 1.2 to 6.7 s, while the SPRLT method exhibits the
longest running time, ranging from 6.6 to 35.4 s. Among
the transformer-based methods, our CMT approach achieves
the shortest running time. For example, on the YRE dataset,
it reduces the running time compared with the SF, SSFTT,
and SPRLT methods by 0.2, 2.3, and 25.3 s, respectively.
Concerning model parameters, our CMT approach boasts
relatively fewer parameters, approximately 103 500, excluding
the CNNHSI method. The parameters count is significantly
lower than that of the HybridSN (around 534 000 parameters)
and SPRLT (around 837 000 parameters) methods. Overall, our
CMT approach not only achieves high classification accuracy
but also exhibits relatively lower computational complexity.

F. Generalization Performance

To illustrate the effectiveness and robustness of our CMT
approach, the generalization experiments are conducted on the
Indian Pines, Houston 2013, and Pavia University datasets,
because the classification accuracy can be greatly improved
with the increase in the number of training samples. The
number of training samples for each class is set to 5, 10,
20, 30, and 50 for all the methods. Considering that the total
number of samples for some of the categories in Indian Pines
is smaller than the number of samples to be sampled, the
experiment will keep five samples per category as test samples
and the rest as training samples. The experimental results are
shown in Fig. 16. It can be seen that the accuracy of all the
methods improves with the increase in the number of training

samples, and the model accuracy reaches the maximum when
the training sample size is 50. Our approach not only has
an obvious advantage in the case of small samples but also
significantly outperforms the compared methods in the case
of any number of samples. Some CNN-based methods have
achieved excellent improvement. For example, the classifi-
cation accuracy of CNNHSI and HybridSN methods on the
Houston 2013 dataset is higher than 95%. Similarly, in the
transformer-based methods, the SSFTT and SPRLT perform
well on those three datasets, while the performance of SF is
relatively poor.

V. CONCLUSION

In this article, we propose a lightweight and efficient
transform-based network named CMT for HSI classification
with limited training samples. Specifically, the L2GTE frame-
work and the MCTE module are designed for the feature
extraction of HSI, and the RCPT task is first proposed in
combination with the MIM method, which can make full use
of the unlabeled samples to learn the relationship between
central ground objects and their surrounding objects and can
effectively improve the classification performance in the case
of small samples. To demonstrate the robustness and effec-
tiveness of our proposed CMT approach, a series of ablation
experiments and comparative experiments are conducted on
the five public datasets. The experimental results show that
our approach achieves a significant performance advantage
in the case of small samples and outperforms other state-
of-the-art CNN-based and transformer-based methods. For
reproducibility, the core code of the proposed approach can
be found at https://github.com/rookie-YIFAN/CMT.
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