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Abstract— The reconstruction of subsurface ocean temperature
using sea surface observations and in situ Argo measure-
ments is an important yet challenging task. The availability
of long-term and high-resolution sea surface remote sensing,
combined with advancements in deep learning technology, has
opened new opportunities for studying subsurface temperature
(ST) reconstruction. In this study, a novel spatial-temporal
Siamese convolutional neural network (SSCNN) is proposed to
improve the accuracy of ST reconstruction in the Indian Ocean.
First, considering the distinctions of temperature characteristics
among different sea areas, a multiscale division scheme based on
the correlation coefficient of integral ST is designed for refined
reconstruction modeling. Second, since ocean heat is significantly
affected by solar radiation, asymmetric convolutional operation
with rectangular patches and kernels is designed to capture the
information characteristics in longitude and latitude directions,
respectively. Third, given the temporal changes and correlations
of ocean temperature, an SSCNN with shared parameters is
proposed for multiview feature mining and accurate temperature
structure reconstruction. The reconstructed results provide a
precise depiction of the subsurface Indian Ocean dipole (sub-
I0D)’s evolution, including the spatial distribution of positive and
negative anomaly signals and its temporal changes. It demon-
strates that the subsurface dipole index series obtained from
SSCNN reconstruction is consistent with that from International
Pacific Research Center (IPRC) observation, remaining within a
reasonable error range. Comparative experiments indicate that
the SSCNN model surpasses other existing methods in terms of
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higher accuracy and smaller error. Overall, this study provides
a promising approach for effectively reconstructing the ST using
deep learning methods and offers valuable insights for analyzing
the evolution of subsurface positive dipole in Indian Ocean.

Index Terms—Indian ocean, remote sensing, Siamese con-
volutional neural network (CNN), spatial-temporal feature
extraction, subsurface temperature anomaly (STA).

I. INTRODUCTION

HE issue of global warming has been widely discussed

for years [1]. To gain a deeper scientific understanding
of global warming, it is essential to focus on the ocean,
which constitutes about 71% of the Earth’s surface area
and plays a crucial role in the climate system [2]. It is
imperative to enhance the research on physical properties of
ocean subsurface, which is vital to comprehend the internal
dynamic processes related to ocean. Studies have shown that
temperature and salinity are the primary physical quantities
to examine. The ocean is the global energy hub, with about
93% of the Earth’s excess heat stored in it [3]. The global
warming has resulted in a significant increase in ocean heat
content, particularly in the deep ocean [4], [5]. As heat
continues to accumulate, the ocean heat content reached a
record high in 2021 [6], [7], [8]. Therefore, obtaining extensive
and long-term data on ocean subsurface temperature (ST) is
crucial in improving our understanding of the ocean’s internal
dynamic processes.

With the advancement of satellite remote sensing technol-
ogy, ocean surface observation data have become increasingly
available, offering high-resolution and long-time data [9], [10].
However, this technology is unable to observe the ocean
subsurface, as electromagnetic radiation cannot penetrate deep
enough [11]. Although the global subsurface observation data
have gradually increased since the Argo program began in
2004 [12], the number of profiling floats is still inadequate
for full ocean coverage. This limits the ability to capture
small- and medium-scale signals in subsurface and the under-
standing of ocean’s internal mechanisms [13]. Studies have
shown that ocean internal activities can manifest as surface
phenomena, and vice versa [14]. Therefore, it is possible to
use multisource sea surface remote sensing data and Argo
subsurface observation data to reconstruct the vital subsurface
dynamic information, such as the thermohaline structure [15].
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Most sea surface parameters have high spatial and temporal
resolution, making it feasible to reconstruct a high-resolution
ST structure, and this approach has emerged as a current
research hotspot [16].

The reconstruction of ocean surface temperature based on
traditional machine learning algorithms can usually obtain
good results and stable model performance [17], [18], [19],
[20]. Related works involve the methods of support vector
machine (SVM) [21], random forest (RF) [22], [23], and
extreme gradient boosting (XGBoost) [15], [24]. Nonetheless,
due to the model limitations of these methods, they generally
rely on the prior knowledge and lack the deep ability to extract
spatial-temporal characteristics of sea surface information.
Although the integrated algorithms such as RF [22], [23] and
XGBoost [15] enhance the generalization ability by combining
results of multiple weak learners, they still do not fully mine
the semantic features of remote sensing input. With the rapid
development of artificial intelligence, deep learning algorithms
have shown strong adaptability to fit the complex relation-
ships and learn the high-level features automatically [25].
Through the end-to-end learning paradigm, deep models can
identify the patterns hidden in ocean big data for better
reconstruction of ST [26]. Related works involve the methods
of long short-term memory (LSTM) network [27], [28], [29],
convolutional neural network (CNN) [30], [31], [32], and their
integration [33].

First, Buongiorno Nardelli [27] proposed a technique using
stacked LSTM network and Monte Carlo dropout to provide
hydrographic vertical profiles over the North Atlantic Ocean.
Su et al. [28], [29] built a bidirectional LSTM (Bi-LSTM)
network for predicting global ocean ST and salinity anomalies,
and then reconstructed a long time-series ocean heat content
dataset and filled the pre-Argo data gaps. These studies
established unified reconstruction models for large-scale ocean
areas to conduct underwater predictions. However, the spatial
and temporal characteristics of sea surface and subsurface
variables are not the same among different regions, so direct
modeling of the entire sea area would reduce the accuracy
of feature extraction and subsurface reconstruction. Second,
Han et al. [30] proposed a CNN method to estimate ST in
the Pacific Ocean from a suite of satellite remote sensing
measurements. Meng et al. [31], [32] retrieved ST and salinity
anomalies in the Pacific Ocean at high resolution using CNN
model, and also estimated ocean subsurface and interior vari-
ables for dynamic height fields and ocean geostrophic flows.
Nonetheless, the size and shape of convolution kernels for
CNN spatial feature learning are usually fixed in these stud-
ies, which do not correspondingly align with the contextual
variation patterns of sea surface temperature (SST) and other
variables in latitude (LAT) and longitude (LON) directions.
Third, Zhang et al. [33] comprised the CNN, LSTM, and
multiple-layer stacking to consider the horizontal and ver-
tical temperature variations from sea surface to subsurface,
which considered both temporal and spatial information for
ST calculation. However, its extraction of complicated spatial
and temporal characteristics of multisource remote sensing is
insufficient, and the multiview and effective feature fusion of
sea surface variables for ST reconstruction is lacked.
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The Indian Ocean is the third largest ocean out of the
world’s oceans, and it holds a crucial position in the global
climate system [34]. Due to its location primarily within the
tropics, it is also the warmest ocean on the Earth [35], [36].
However, the Indian Ocean is significantly influenced by the
monsoon climate, and anomaly changes in SSTs can have
serious impacts on the surrounding. Indian Ocean dipole is
a crucial phenomenon of sea surface temperature anomaly
(SSTA), which is driven by the cooling of SST in the Southeast
of tropical Indian Ocean [37], [38], [39]. Given the vital role
of Indian Ocean, this study aims to reconstruct its ST structure
within the areas North of 35°S above 1000-m underwater,
using the proposed deep learning model that combines multi-
source sea surface remote sensing and Argo observation data.
The study area is restricted to a specific region, spanning
from 25°E to 120°E and from 35°S to 30°N, to achieve a
high-resolution and high-precision ST reconstruction.

In this study, we propose a novel spatial-temporal Siamese
CNN (SSCNN) to improve the accuracy of ST reconstruc-
tion in the Indian Ocean. First, considering the observation
limitations in coastal areas and various marine processes in
noncoastal areas, the sea area is divided into multiple regions
for spatial-temporal extraction and multiscale reconstruction,
according to the correlation coefficient of integral ST. Second,
the asymmetric convolutional calculation with rectangular
patches and kernels is proposed to flexibly model the sig-
nificant changes with LAT and slight changes with LON,
as solar radiation mainly affects the spatial distribution of
temperature. Third, due to the correlation between sea surface
remote sensing variables of adjacent months, an SSCNN with
shared parameters is designed to extract time-series features
in parallel and fuse multiview features for decision-making,
on the basis of contextual convolution branches. Finally, the
reconstruction results of comparison experiments on different
depths and seasons demonstrate that our SSCNN model out-
performs other existing methods, with higher accuracy and
smaller error.

The main contributions of this article are given as follows.

1) A multiscale scheme of sea area division based on the
correlation coefficient of integral ST is proposed for
refined reconstruction modeling. On the one hand, the
modeling of coastal and noncoastal areas at different
scales is conducive to learning the transitional region
relationships and alleviating the land boundary influ-
ence. On the other hand, the division of noncoastal
waters according to correlation coefficient can enhance
the extraction of spatial-temporal characteristics and
promote the fitting of Indian Ocean phenomena.

Since ocean heat is significantly affected by solar
radiation, the asymmetric convolutional operation with
rectangular patches and kernels is designed to capture
the characteristics in LON and LAT directions, respec-
tively. The zonal distribution is modeled to make CNN
consider the obvious changes along with LAT and the
slight changes along with LON. Inspired by this, the
traditional square kernel is improved into the asymmetric
rectangular kernel for better content interpretation of
multisource remote sensing observations.

2)
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3) Given the temporal changes and correlations of temper-
ature, an SSCNN with shared parameters is proposed
for multiview feature mining and accurate temperature
structure reconstruction. The Siamese branches have
the advantages of consistent information processing and
associated characteristic transmission. The reconstructed
results provide a precise depiction of the sub-IOD’s
evolution, including the spatial distribution of positive
and negative anomaly signals and its temporal changes.

The remainder of this article is structured as follows.
Section II introduces the progress of temperature reconstruc-
tion using traditional machine learning and deep learning
methods. In Section III, the detailed description of SSCNN
model is illustrated. Section IV presents the experimental setup
of dataset description and data preprocessing, and Section V
presents the ablation experiments and comparison experiments
for different depths and seasons. Finally, Section VI provides
a summary and conclusion of this work.

II. RELATED WORKS
A. Traditional Machine Learning

In the early stage, traditional methods for ST reconstruc-
tion are mainly based on pattern assimilation and statistical
reconstruction [10], [40]. The pattern assimilation methods
produce reconstruction results that adhere to basic physical
laws, but it is computationally expensive and requires a
large amount of experience. On the other hand, statistical
reconstruction methods such as linear regression [13], [41],
[42], geographically weighted regression [43], and empirical
orthogonal function have lower computational cost but rely
heavily on the historical data.

Nonlinear machine learning algorithms are becoming
increasingly important in the research, and integrated learning
algorithms such as RF and SVM are particularly popular due
to their ease of use with large datasets [17], [18], [19], [20].
Su et al. [21] employed the SVM method to reconstruct the
subsurface temperature anomaly (STA) in the Indian Ocean.
Subsequently, Su et al. [22] proposed an RF machine learning
method that used multisource satellite remote sensing data to
estimate the global ocean ST. It reconstructed the STA based
on the anomaly of sea surface height (SSH), SST, salinity
(8SS), and wind (SSW) variables. The anomaly of variables
are obtained by subtracting the climatology, which is the
average data for approximately 30 years, including the sea
surface remote sensing and ST. Yang et al. [23] also used the
RF algorithm to analyze the reconstruction effect in different
ocean basins around the world.

In the later studies, Shahdi et al. [44] adopted XGBoost
and RF methods for ST prediction, and derived a geothermal
gradient map for the whole region by fitting linear regression
to the predicted temperature along the depth. Qi et al. [24]
proposed an ensemble machine learning model to retrieve
subsurface thermal structure in the South China Sea, with com-
bination of XGBoost, RF, and light gradient boosting machine
(LightGBM) as benchmark models. It found that the geo-
graphical information is essential to estimate the subsurface
thermal structure, and the ensemble model is more accurate
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and precise than the individual models. Traditional machine
learning algorithms have made significant contributions to the
reconstruction of ocean ST and salinity structure, but they rely
heavily on the feature engineering. On the other hand, deep
learning algorithms learn the weights and extract the features
automatically without feature engineering, which are adaptable
and easy to transform.

B. Deep-Learning-Based Reconstruction

With the rapid development of artificial intelligence tech-
nology and marine big data, there has been a growing trend
in integrating the advantages of these two to improve the
accuracy and efficiency of STA reconstruction [45], [46],
[47]. CNNs and other deep learning models have shown
great potential in improving the performance and overcoming
the limitations in various fields [25], [48], [49], including
speech recognition, natural language processing, and image
classification [50], [51], [52], [53]. Although the application
of deep learning in the field of Earth science is still in
its early stage, there have been some successful exploration
cases [26]. Moreover, self-organizing map (SOM) [54], [55],
clustering neural network [56], multilayer perceptron (MLP)
[57], artificial neural network (ANN) [9], backpropagation
neural network (BPNN) [11], and other neural network meth-
ods are also applied to reconstruct the STA, demonstrating
their ability to simulate the nonlinear relationships. Recent
studies also explored the ability of LSTM to extract temporal
characteristics from marine data, which has obtained the stable
reconstruction results [27], [28], [29].

In the study of reconstructing SST and SSS using
CNNs, several approaches have been proposed, including
2-D CNN [30], [31], [32], 1-D CNN [16], and CNN com-
bined with LSTM [33]. Although these methods have shown
promising results, there are still some limitations. For exam-
ple, Han et al. [30] proposed to use the multisource sea
surface parameters to establish a monthly CNN model to
reconstruct the ST, but the CNN cannot utilize the correlation
before and after the feature sequence time. Meng et al. [31]
discarded more than half of the images with missing value
grids when building the sea surface feature maps, which
significantly reduces the utilization of marine data and the
applicability for coastal areas. Additionally, Su et al. [16]
used only 1-D CNN to model the relationships between
sea surface variables and subsurface properties, which has
deficiency in the spatial-temporal feature extraction of sea
surface remote sensing information. There still exist the prob-
lems of imprecise nonregional modeling, symmetrical LON
and LAT feature extraction, and insufficient spatial-temporal
semantic integration in deep learning methods for ST
reconstruction.

To overcome these limitations, further research is needed
to explore an optimized deep model to capture the temporal
and spatial dependencies in marine data and promote the
ST reconstruction accuracy. Therefore, this article proposes a
novel SSCNN for effective reconstruction. It comprehensively
uses multiple remote sensing to achieve full extraction of
spatial-temporal features, adaptive learning of regional pat-
terns, and efficient reconstruction of ST.
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III. METHODOLOGY

The SSCNN utilizes diverse sea surface remote sensing
variables to reconstruct the STA above 1000 m in Indian
Ocean, as shown in Fig. 1. On the one hand, input vari-
ables include SSTA, salinity anomaly (SSSA), significant
wave height anomaly (SWHA), absolute dynamic topogra-
phy anomaly (ADTA), zonal wind anomaly (UWNDA), and
meridional wind anomaly (VWNDA). On the other hand, input
variables also include geographic location information of LON
and LAT. Specifically, the framework includes four main parts.
First, the Indian Ocean is divided into three parts through
temperature correlation coefficient, and different scales are
created to improve the data extraction. Second, the rectangular
convolution patches and kernels are designed to enhance the
extraction of spatial features, achieving asymmetric expression
of sea surface variables along the LAT and LON. Third,
diverse remote sensing variables of sea surface in each month
are organized into multichannel inputs and fed into Siamese
CNN branches for spatial-temporal learning. Finally, feature
vectors of each branch are fused to obtain the temperature
output of various depths by reconstruction module.

A. Multiscale Division and Modeling

1) Temperature Correlation Coefficient Calculation: Con-
sidering that different sea areas have dissimilar distribution
and variation characteristics of temperature and salinity, sea
area division according to the temperature integral correlation
coefficient is proposed to enhance the precise reconstruc-
tion modeling. The ocean thermocline experiences significant
temperature variations, which is approximately at depth of
100-300 m below the sea surface. In order to accurately
calculate the temperature correlation coefficient between grid
points, it is necessary to consider both the SST and ther-
mocline temperature simultaneously. The temperature changes
below a depth of 300 m tend to be relatively stable, with less

Overall flowchart of the proposed SSCNN method for ST reconstruction.

variation in deeper water. Hence, the temperature information
above 300 m is integrated and summed for the subsequent
calculation of correlation coefficient. However, the function
expression that describes how SST varies with depth is
unknown. As a result, an integral approximation of the obser-
vation data is obtained through the gradient algorithm in this
study, represented as
T, = trapz(x, y) (1)

where T, represents the temperature of grid point after integra-
tion, x = [0, 5, ..., 300] represents the depth vector from sea
surface, and y = [Ty, T3, . . ., T13] represents the ST vector that
corresponds to the depth vector. trapz(-) denotes the function
to approximate the integral of ST using trapezoidal rule. The
vector x has nonuniform space between its different values,
with an increasing interval as the depth expands. Considering
the temperature of subsurface changes more slowly with depth,
the upper levels are sampled densely, and the deep levels are
sampled sparsely. Specifically, the sampling interval is set as 5,
10, 20, 25, and 50 m for the depth range of 0-10, 10-30,
30-50, 50-150, and 150-300 m, respectively. By using this
sampling interval, the vector x can effectively capture different
temperature changes at various depths in the subsurface.

Then, each of grid points is processed point by point, and
temperature data for each point are treated as a series with the
length of 84, representing the 84 months from 2010 to 2016.
For a given grid point a, its temperature sequence is denoted as
(ai, as, ..., ags), and the mean value a, of entire sequence is
calculated. Similarly, for another grid point b, its temperature
sequence is denoted as (b1, by, ..., bgs), and the mean value
b, is also calculated. Subsequently, the correlation coefficient
between these two temperature series can be expressed as

n

a; = Z(az,i)/n

i=1

2)
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where a, and b, represent the temperature of grid point a and
b at time t, respectively, and n = 84 means the total number
of months. The temperature correlation coefficient describes
the distribution patterns of water mass, providing the basis for
precise reconstruction modeling.

2) Multiscale Sea Area Division: Since the ocean heat is
significantly influenced by the solar radiation and displays
a zonal distribution, rectangular areas of varying sizes are
established to calculate the local correlation of grid points.
The length of rectangle is aligned with the LAT direction,
and the width corresponds to the LON direction. By calcu-
lating the local correlation of grid points within these areas,
the temperature integral correlation coefficient maps can be
obtained. The results indicate that using a rectangular area
in the size of 9° x 6°, the produced temperature correlation
in the Indian Ocean is relatively continuous, which is proper
to divide the regions and facilitate the subsequent modeling.
Fig. 2(a) illustrates the temperature correlation coefficient of
grid points calculated using 9° x 6° size in the Indian Ocean.

Based on the correlation coefficient map, the noncoastal
Indian Ocean has been divided into two regions. The division
is based on a cutoff correlation value of 0.85, as shown in
Fig. 2(b). This value is chosen to ensure that grid points with
high correlation coefficients are grouped together as much
as possible, while those with low correlation coefficients are
grouped together as a separate region. This approach helps in
creating relatively complete and continuous regions, which is
convenient for model construction. Coastal areas were treated
separately due to a relative lack of sea surface observation
data, especially for annual salinity data where there are often
missing values. The complex boundaries between land and
sea in coastal areas also make it difficult to group them with
noncoastal areas. Fig. 2(b) illustrates the final division result
of Indian Ocean, with the blue region representing noncoastal
area with higher correlation, the green region representing
noncoastal area with lower correlation, and the red region
representing coastal area.

The grid points in the blue region exhibit a high coefficient
and strong correlation, and the remote sensing observation data
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are relatively complete. Hence, larger patches in the size of
7° x 4° are utilized to construct the 2-D sea surface feature
input in order to effectively capture the spatial correlation of
marine elements. On the other hand, the correlation coefficient
of grid points in the green region is lower than that in the blue
region, so smaller patches in the size of 5° x 3° are adopted to
consider the appropriate spatial context and construct the sea
surface input. Using too large patches in the region with lower
correlation coefficient would introduce irrelevant information
and then cause accuracy reduction, and moderate patches are
better for spatial extraction. As for the red region, it contains
numerous missing data and complex boundaries, so further
smaller patches in the size of 3° x 2° are utilized to cover as
much of the near-shore area as possible. In the Indian Ocean,
the sea area is divided into multiscale regions for precise
reconstruction modeling, including 7° x 4° as large scale, 5° x
3° as medium scale, and 3° x 2° as small scale.

B. Asymmetric Convolutional Operation

Inspired by the rectangular region modeling above, an asym-
metric convolution kernel with the size of 5 x 3 is designed to
extract the sea surface features for more accurate STA recon-
struction. The process is beneficial to capturing the significant
temperature variations along with LAT as well as the slight
variations along with LON. It involves sliding a window with
the size of 5 x 3 over the channels of sea surface remote
sensing feature maps. The step size of each slide is 2, and the
padding of LON and LAT directions is 1 and 2, respectively.
By setting the sliding step size as 2, the output shape of
feature maps, the number of convolutional operations, and the
redundancy of entire architecture are effectively reduced. The
LON and LAT directions are filled differently to make full
use of the edge information, improve the utilization of sea
surface features, and enhance the overall accuracy. The LAT
direction is filled with one more row than the LON direction
because the ocean temperature is mainly affected by solar
radiation with a zonal distribution. The size of sea surface
remote sensing feature maps before and after the rectangular
convolution kernel processing is expressed as

in+2pn—k
oh:erl (5)
Sh
'w 2w_kw
0, = w0 —Ku (6)

Sw

where i, and i, represent the height and width of remote
sensing input before operation, respectively. For the input
layer, i, and i, correspond to the patch sizes of 3° x 2°,
5° x 3° and 7° x 4° in nearshore and nonnearshore areas
with different correlation coefficients, respectively. For the
intermediate feature extraction layers, i, and i, correspond
to the size of input feature maps for each layer. o, and o,
represent the height and width of remote sensing feature map
after operation, respectively. k;, and k,, represent the height and
width of rectangular convolution kernel, respectively. p, and
Pw denote the padding size of height and width, respectively.
s;, and sy, denote the step size of height and width, respectively.
In this study, k, = 5, ky = 3, pp = 2, pp = 1, and
Sp = Sy = 2.
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In general, using a rectangle-shaped convolution kernel
can capture more variations of sea surface remote sensing
variables in the LAT direction, thereby improving the accu-
racy of temperature construction. The output of convolutional
operation using a rectangular kernel and the activation function
of rectified linear unit (ReLU) is expressed as

x; =0(z) = ReLUW; % x;_1 + by) (7
5 3 C P P
Xp =3 3 > wih xS b (8)
i=1 j=1 c=1

where x; and x;_; represent the output at current layer and
previous layer, respectively. W; means the weights of rectan-
gular convolution kernel, and b, means the bias. Taking an
example of patch p, x; , and x;_; , represent the convolution
output and input, respectively. w; , and b; , are the weights and
bias of gth rectangular convolution, respectively. x;’;", means
the specific value at ith row, jth column, and cth channel of
Xi-1,p, and w7’ means the corresponding convolution weight.
The range of i and j depends on the height and width of
rectangular convolution kernel, and the range of ¢ depends on
the number of channels. Specifically, ¢ is equal to 8 at the first
convolution layer since there are eight variables of sea surface
and location input into the Siamese CNN. On the basis of
forward propagation of asymmetric convolutional calculation,
the model further updates the parameters through backpropa-
gation. In summary, the common square convolution kernels
are simpler and more general purpose, while the designed
rectangular convolution kernels are more flexible and useful
for complex ocean information processing tasks. Asymmetric
convolutional operation is used for the feature extraction of sea
surface, pattern recognition of spatial-temporal information,
and temperature reconstruction of subsurface.

C. SSCNN

The SSCNN is derived from the Siamese network structure,
which has branches connected by shared weights. Siamese
networks are advantageous when dealing with the similar
inputs, and the changes in sea surface and subsurface elements
have continuity and correlation in time series. Therefore,
in this study, an SSCNN with multiple branches of consecutive
monthly information is proposed for the feature extraction
from multisource remote sensing. The number of branches and
how to fuse their outputs are critical factors. Increasing the
monthly input of remote sensing is beneficial for improving
the feature extraction and thus enhancing the reconstruc-
tion accuracy. However, too many network branches would
increase the number of parameters and introduce the potential
interference, thus reducing the training efficiency. Based on
these considerations, the SSCNN is designed with three shared
branches, which receive the multisource sea surface remote
sensing of three adjacent months in sequential order for deep
feature learning.

As shown in Fig. 1, the feature extraction branches primarily
consist of 2-D convolutional layers based on the rectangular
convolution kernels. In order to balance the learning capacity
and network complexity, six layers are adopted in the structure
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TABLE I
PARAMETER SETTING OF SSCNN BRANCHES AT EACH LAYER

Layer Input_C  Output_C Kernel Stride Padding
Convl 8 16 5, 3) 2 2,1
Pooling / / 2,2 2 /
Conv2 16 32 5, 3) 2 2, 1)
Conv3 32 64 s, 3) 2 2,1
Conv4 64 128 5, 3) 1 2,1
GAP 128 128 / / /

of each Siamese CNN branch, including four convolutional
layers and two pooling layers, as shown in Table I. Input_C
and Output_C denote the channel numbers of input and output
feature maps, respectively. The stride is set as 2 for the
effective dimension reduction and spatial-temporal semantic
extraction layer by layer. The settings of kernel and padding
size are related to the asymmetric convolutional operation.
Following each convolutional layer, there are batch normaliza-
tion and activation function. Let x € R¥*C*H*W denote the
multichannel feature maps in each batch, where N represents
the number of samples, C represents the number of channels,
and H and W represent the height and width of feature
maps, respectively. The calculation of batch normalization is
expressed as

1 N H W
He = NxHxW ;;;xn,c.h,w (9)
1 N H W )
% =\ N 2 2 2 e ko) ke (10
EC:xCQ e XVC+,BC (11)

where x. and X. represent the feature map at cth channel
before and after batch normalization, respectively. . and
0. are the mean value and standard deviation of channel
¢, respectively. ¢ is a value added to the denominator to
increase the stability of calculation. y, and 8. are two learnable
parameters of batch normalization, which are used to scale and
shift the normalized values and automatically learned by the
network. A value of y, close to 1 means that the feature is
preserved as is, while a value greater than 1 amplifies the
feature and a value less than 1 attenuates it. A value of B,
close to 0 means that no shift is applied, while a nonzero
value shifts the feature by a certain amount.

The ST reconstruction for a target month is achieved using
the SSCNN, which involves several steps. First, multisource
remote sensing variables for the target month and last two
months are organized into eight channels, respectively, includ-
ing SSTA, SSSA, SWHA, ADTA, UWNDA, VWNDA, LON,
and LAT. Second, the sea surface variables are input into
Siamese branches with asymmetric convolution and shared
weights for deep feature extraction. Diverse rectangular convo-
lution kernels are adopted to learn the local and global features
of multisource sea surface information, and the numbers of
kernels at four convolutional layers are set to 16, 32, 64, and
128, respectively. To reduce the number of parameters in the
fusion of Siamese branches, the remote sensing feature maps
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of each branch are aggregated as the overall sea surface vector
using global average pooling (GAP), which is represented as

1 H W
Ze = mzzuc(h,w)

h=1 w=1

12)

where H and W represent the height and width of remote
sensing feature map, respectively, u.(h, w) represents the
value of channel ¢ at position (k, w) in feature map, and z.
means the aggregation value of channel c.

Weight sharing is implemented among the three branches
to ensure that each branch extracts sea surface remote sensing
features corresponding to each month in the same pattern.
The GAP feature vectors of three branches are merged in
the channel dimension, and the resulting temporal features
of sea surface are fed into the final reconstruction mod-
ule. The design of Siamese branches for spatial-temporal
feature extraction is conductive to coupling the individual
changing trends and mining the complex relationships among
various variables. Specifically, each branch outputs a remote
sensing feature vector with the size of 128, and the out-
put vectors of three branches are concatenated, represented
by

SSTA LON

zp1 = Branch([xp3™, ... xp 0N, xp4T]) (13)
2y = Branch([x;5™, ..., xp 0N, xh3T]) (14)
zp3 = Branch([x;5™, ..., xp3N, xb4T]) (15)
Zeon = Concat(z,1, Zp2, 263) (16)

where x,,1, X2, and x,,3 denote the remote sensing input of
last two months and target month, respectively, for the Siamese
feature extraction. [xSSTA . . xLON xLAT] means the vector
of various sea surface variables. Branch(-) means the sequen-
tial operation of convolution and pooling layers in each branch,
which obtains the corresponding GAP vectors of zp1, Zp2,
and z,3. Concat(-) means the channel concatenation of GAP
feature vectors to produce the comprehensive information for
final reconstruction module.

D. Reconstruction Module

The reconstruction module consists of 1-D convolution
and fully connected (FC) layers. The 1-D CNN layer first
performs the convolution operation through 1 x 3 kernels
and then transforms the features through ReLU activation.
It calculates the feature correlations of multichannel informa-
tion and extracts the internal relationships of spatial-temporal
characteristics from three adjacent months. After the 1-D con-
volution and ReLU activation, there is a maxpooling operation
to reduce the length of features and extract the compressed
semantics for ST reconstruction. The above process of convo-
lution, activation, and maxpooling is repeated twice to deepen
the temporal feature fusion and enhance the fitting between
sea surface and subsurface variables. Subsequently, FC layer
connects to the input of 1-D CNN vectors and the output of
STA values, which are organized into a sequence of different
standard depths. Each STA at a specific depth is denoted
as the corresponding output neuron, generated through the
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integration of 1-D CNN and FC layers. The reconstruction
module is expressed by

Za1 = ReLU(W‘il * Zgextcon T bal) (17)
Za» = ReLU(W,, * 241 + bu2) (18)
¥y =FC(z42) (19)

where W/, and W/, denote the convolution weights of two
1-D CNN layers, respectively, and b,; and b, are the corre-
sponding bias. The obtained feature z,, is input into the FC
layer to reconstruct the STA y.

The whole model is trained through the backpropagation
of L2 loss function, and the final reconstruction outputs are
K -dimensional vectors, where K is the number of standard
layers in Indian Ocean. L2 loss function is adopted to mini-
mize the sum of squares of difference between the observed
and reconstructed STA. Let y; represent the observed STA
vector of various standard layers at grid point i, y; represent
the corresponding reconstructed STA vector, and M represent
the number of sample grid points. L2 loss function can be
shown as

M
ﬁ(y’j’) = LMZ()’i _)71')2 (20
1

where the iterative optimization of model is carried out by
the stochastic gradient descent algorithm with backpropaga-
tion. In general, SSCNN method learns the spatial-temporal
features from multisource sea surface remote sensing and
reconstructs the ST through multiscale division, asymmetric
convolution, and Siamese structure.

IV. EXPERIMENTAL SETUP

In this section, we present a detailed description of exper-
imental setup to demonstrate the implementation of our
proposed model in reconstructing the ST of Indian Ocean. The
evaluation of research results is based on the mean absolute
error (MAE), root-mean-square error (RMSE), normalized
root-mean-square error (NRMSE), and coefficient of determi-
nation (R?) as quantitative indicators.

A. Description of Datasets

The remote sensing data used in this study include mul-
tiple variables related to the sea surface, such as SST,
SSS, sea wave height (SWH), absolute dynamic topography
(ADT), and SSW (UWND and VWND). The SST data
are obtained from the National Oceanic and Atmospheric
Administration, Washington, DC, USA and acquired by the
Advanced Microwave Scanning Radiometer-Earth Observing
System (AMSR-E) sensor. It covers a global extent and
a time frame from 1981 to present with daily temporal
resolution and 0.25° spatial resolution. The SSS data are
obtained from the European Space Agency Paris, France and
acquired by the Soil Moisture and Ocean Salinity (SMOS)
sensor. It covers a global extent and a time frame from May
2010 to August 2017 with monthly temporal resolution and
0.25° spatial resolution. The SWH data are obtained from the
Copernicus Marine Service, Brest, France, describing a global
wave reanalysis of past sea conditions from 1993 to present,
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with 3-hourly temporal resolution and 0.2° spatial resolution.
The ADT data are also obtained from the Copernicus Marine
Service and derived from the global ocean grid L4 SSH and
postprocessing. It covers a time frame from 1993 to present
with daily temporal resolution and 0.25° spatial resolution.
The UWND and VWND data are obtained from the Cross-
Calibrated Multi-Platform (CCMP) project. They cover a
global extent and a time frame from 1987 to present with
monthly temporal resolution and 0.25° spatial resolution. The
ST data are obtained from the International Pacific Research
Center (IPRC), Hawaii, HI, USA for the Argo gridded data.
It covers a spatial extent of 180°W-180°E and 60°S—60°N,
and a time frame from 2005 to present with monthly temporal
resolution and 1° spatial resolution.

B. Data Preprocessing

The spatial and temporal resolutions of sea surface remote
sensing observation data and IPRC Argo data are not con-
sistent. To address this, the nearest neighbor interpolation
algorithm is used to standardize the spatial resolution to
0.25° x 0.25° and the temporal resolution to monthly intervals.
Since the seasonal signal is stronger than other physical ocean
signals, it is necessary to remove it from the data and focus
on other important physical ocean signals. Each variable’s
climatic average is subtracted from the corresponding monthly
data to produce the anomaly of each variable, including
SSTA, SSSA, SWHA, ADTA, UWNDA, VWNDA, and STA.
To facilitate the model training, maximum and minimum
normalization is carried out on each variable, shown as

X - Xmin
X max — X min
where X,om represents the normalized variable, and X repre-
sents the original value. X, and X,x denote the minimum
and maximum values among all training samples, respectively.
When maximum and minimum normalization is applied to
the testing data, Xpni, and Xy.x are still the minimum and
maximum values of training samples.

The SSCNN method proposed in this article adopts three
scales to reconstruct the STA of Indian Ocean, which are
3° x 2° 5° x 3° and 7° x 4°, respectively. For these
multiple scales, the target area has a size of 12 x §, 20 x 12,
and 28 x 16 grid points, respectively. To collect the remote
sensing information of sea surface around a target grid point,
if any of the sea surface variables have missing data, skip
the target grid point and continue to retrieve neighborhood
information for the next target grid point. For the coastal area,
small scale of 12 x 8 grid points is employed to extract the
local characteristics and learn the interaction relationships. For
the relatively low- and high-correlation area, medium scale
of 20 x 12 grid points and large scale of 28 x 16 grid
points are employed to fully extract the ocean information,
respectively, since the surrounding remote sensing observation
data are generally complete.

Xnorm = (21)

V. EXPERIMENTAL RESULTS
A. Analysis of Parameters

1) Input Variables: To begin with, the importance of differ-
ent sea surface variables for STA reconstruction is analyzed

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

TABLE I
DIFFERENT COMBINATIONS OF INPUT VARIABLES
Case  Variables
Casel ADTA, SSTA, SWHA, UWNDA, VWNDA, SSSA
Case2  SSTA, SWHA, UWNDA, VWNDA, SSSA, LON, LAT
Case3 ADTA, SWHA, UWNDA, VWNDA, SSSA, LON, LAT
Case4  ADTA, SSTA, UWNDA, VWNDA, SSSA, LON, LAT
Case5  ADTA, SSTA, SWHA, SSSA, LON, LAT
Case6 ADTA, SSTA, SWHA, UWNDA, VWNDA, LON, LAT
Case7 ADTA, SSTA, SWHA, UWNDA, VWNDA, SSSA, LON, LAT
e
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Fig. 3. Reconstruction accuracy of STA at different depths in terms of:

(a) R? and (b) NRMSE under various cases, and the (c) R? contribution and
(d) NRMSE contribution of input variables.

through the experiments of various combinations, as shown
in Table II and Fig. 3. A total of seven combinations of
input variables are designed to compare the differences in
STA reconstruction by sequentially removing each sea surface
variable. Among them, Case 1-Case 6 remove geographi-
cal location (LON and LAT), ADTA, SSTA, SWHA, SSW
(UWNDA and VWNDA), and SSSA variables, respectively,
while Case 7 includes all variables for comparison. The target
month is set as October 2015, and the vertical layers include
standard depths of 30, 50, 75, 100, 125, 150, 200, 250, 300,
400, 500, 600, 700, 800, 900, and 1000 m. Considering the
months of data for various sea surface elements in common,
the monthly dataset is available from January 2011. The
samples before target month are used for training, and the
samples of target month are used for testing. It can be
seen that Case 7 exhibits the highest accuracy in terms of
R? and the lowest error in terms of NRMSE among all
the cases at most depths. This indicates that all the sea
surface variables (SSTA, SSSA, ADTA, SWHA, UWNDA,
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and VWNDA) and location variables (LON and LAT) are
important for accurately reconstructing the STA of Indian
Ocean. The absence of any variable would lead to a reduction
in the accuracy of reconstruction, and similar conclusion is
also mentioned in [28]. Overall, for depths from 30 to 1000 m,
the R? value first increases obviously, reaching a maximum
at about 100 m, and then gradually decreases and stabilizes.
The average R? of 16 standard depths (30, 50, 75, 100,
125, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, and
1000 m) is 0.435, 0.380, 0.399, 0.445, 0.409, 0.422, and
0.494 for Case 1-Case 7, respectively. The p-values of paired-
sample t-test (two-sided) for the R? of 16 layers are 1.48E-05,
4.41E-07, 6.73E-05, 0.0006, 1.83E-10, and 1.30E-07 between
Case 7 and Case 1, Case 2, Case 3, Case 4, Case 5, and
Case 6, respectively. Correspondingly, the NRMSE value first
decreases rapidly, reaching a minimum at about 100 m, and
then gradually increases and decreases again. The average
NRMSE of 16 standard depths is 0.099, 0.105, 0.102, 0.098,
0.101, 0.100, and 0.094 for Case 1-Case 7, respectively. The
p-values of paired-sample t-test (two-sided) for the NRMSE of
16 layers are 8.43E-06, 7.12E-06, 1.55E-05, 0.0004, 2.43E-10,
and 1.24E-07 between Case 7 and Case 1, Case 2, Case 3,
Case 4, Case 5, and Case 6, respectively.

The contribution of different variables is evaluated in terms
of R? and RMSE in Fig. 3, by comparing and normalizing
the difference of R?> and RMSE between other cases and
Case 7. The accuracy of 300—700-m STA reconstruction results
appears to be less affected by LAT and LON information,
possibly because the spatial location information of sea surface
elements has already been considered when organizing them
into feature maps. The absence of ADTA significantly reduces
the accuracy of STA reconstruction at depths of 100-500 m,
causing a substantial increase in error. The absence of
SSTA obviously reduces the accuracy of results at depths of
500-1000 m. ADTA and SSTA have significant contributions
to the STA reconstruction due to their internal relationships
and strong correlations. The SWHA, SSSA, UWNDA, and
VWNDA have similar and certain importance for temperature
anomaly information above 600 m, but the effectiveness of
SWHA decreases with increasing depth. Besides the SSTA
and ADTA, the results above 125 m exhibits more dependence
on wind anomaly data (UWNDA and VWNDA), which is
possibly due to the significant air—sea interaction in Indian
Ocean and its prevailing monsoon climate. Overall, different
variables have unequal contributions in different depth range,
but the SSCNN model input with all variables achieves the
highest accuracy for ST reconstruction.

2) Kernel Size: To verify the effectiveness of the proposed
asymmetric convolution kernel in extracting spatial-temporal
features from multisource sea surface remote sensing data,
a parameter analysis is conducted on the 5 x 3, 3 x 3,
and 5 x 5 convolution kernels. The reconstruction results
are compared between symmetric and asymmetric convolution
kernels to assess the differences. For the 5 x 3 convolution
kernel, the average R? of different depths are 0.320, 0.432,
0.399, and 0.494 for January, April, July, and October in
2015, respectively, and the average NRMSE are 0.096, 0.102,
0.093, and 0.094, respectively. For the 3 x 3 convolution
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TABLE III

PERFORMANCE OF SSCNN AT DIFFERENT DEPTHS FOR STA
RECONSTRUCTION OF OCTOBER 2015

Depth 5

(16 layers) RMSE NRMSE MAE
30m 0316  0.218 0.110 0.173
50m 0.448  0.279 0.079 0.220
75m 0.616  0.476 0.077 0.347
100m 0.720  0.448 0.077 0.334
125m 0.692  0.335 0.083 0.264
150m 0.626  0.294 0.099 0.228
200m 0.547  0.240 0.110 0.187
250m 0.507  0.217 0.120 0.158
300m 0.513  0.186 0.104 0.134
400m 0531  0.121 0.090 0.094
500m 0432  0.105 0.090 0.078
600m 0374  0.113 0.088 0.083
700m 0.393  0.111 0.092 0.083
800m 0.393  0.113 0.094 0.089
900m 0.450  0.096 0.091 0.074
1000m 0.341  0.087 0.093 0.067

kernel, the average R? of different depths are 0.291, 0.425,
0.401, and 0.476 for January, April, July, and October in 2015,
respectively, and the average NRMSE are 0.097, 0.102, 0.093,
and 0.095, respectively. The p-value of paired-sample t-test
(two-sided) for the R? of four months is 0.048 between 5 x
3 and 3 x 3 kernels, and the p-value for the NRMSE is
0.078. For the 5 x 5 convolution kernel, the average R*> of
different depths are 0.307, 0.392, 0.394, and 0.469 for January,
April, July, and October in 2015, respectively, and the average
NRMSE are 0.096, 0.106, 0.094, and 0.096, respectively. The
p-value of paired-sample t-test (two-sided) for the R? of four
months is 0.016 between 5 x 3 and 5 x 5 kernels, and
the p-value for the NRMSE is 0.092. The designed 5 x
3 convolution kernel achieves the highest overall R?> and
the lowest overall NRMSE, indicating the advantage in STA
reconstruction compared to the symmetric 3 x 3 and 5 X
5 convolution kernels. The asymmetric convolution kernel
takes into account the different distribution of sea surface
variables in the LON and LAT directions, resulting in better
performance in extracting the sea surface remote sensing and
reconstructing the ST structure.

B. Results of Different Depths

Table III presents the performance evaluation results of
SSCNN for STA reconstruction at different depths (16 layers)
using four indicators: R2, RMSE, NRMSE, and MAE for
October 2015. The average R?>, RMSE, NRMSE, and MAE
of 16 depth layers are 0.494, 0.215, 0.094, and 0.163, respec-
tively. Specifically, R?> ranges from 0.316 to 0.720, RMSE
ranges from 0.087 to 0.476, NRMSE ranges from 0.077 to
0.120, and MAE ranges from 0.067 to 0.347. The results show
that RMSE remains at a low value throughout the depth range,
with the highest value occurring at depth of 75 m. The trend of
RMSE is unstable and fluctuating from 0.218 to the maximum
of 0.476 in depth range from 30 to 75 m, and then, it gradually
decreases from 0.476 to the minimum of 0.087 with increasing
depth from 75 to 1000 m. Meanwhile, MAE shows a similar
trend to RMSE, which rapidly raises from 0.173 to the
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Fig. 4. STA reconstruction of (Left) SSCNN compared with the STA
observation of (Right) IPRC for October 2015 at depths of: (a) 100 m;
(b) 300 m; (c) 500 m; (d) 700 m; and (e) 1000 m.

maximum of 0.347 in depth range from 30 to 75 m, and then,
it gradually reduces from 0.347 to the minimum of 0.067 with
increasing depth from 75 to 1000 m. For R?, it reaches the
maximum of 0.720 at depth of 100 m and then gradually
decreases with some fluctuations. For NRMSE, it obtains the
minimum of 0.077 at a depth of 75 and 100 m and reaches
the maximum of 0.120 at a depth of 250 m. In general, STA
and its reconstruction accuracy have significant changes in
shallow layers with the maximum gradient in thermocline and
gradually stabilize in deep layers.

Fig. 4 shows the comparison between STA reconstruction
of SSCNN model and STA observation of IPRC dataset for
October 2015 at depths of 100, 300, 500, 700, and 1000 m,
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Fig. 5. Accuracy evaluation of STA reconstruction results at different depths
of Indian Ocean for four months in terms of: (a) R%; (b) RMSE; (c) NRMSE;
and (d) MAE.

respectively. It demonstrates that the spatial distribution of
SSCNN reconstruction is consistent with the IPRC Argo
data. The reconstructed results of Indian Ocean at a depth
of 100 m show the highest similarity with IPRC Argo data,
particularly in the equatorial eastern coastal waters with strong
negative anomaly signals and the equatorial central waters with
strong positive anomaly signals. At a depth of 300 m, the
negative anomaly signals in equatorial eastern coastal area
and the positive anomaly signals in equatorial central area
decrease, while the negative anomaly signals in 10°S-30°S
eastern coastal area increase. As layer becomes deeper, the ST
tends to be stable, resulting in weaker positive and negative
anomaly signals. Accordingly, the RMSE of 700 and 1000 m
is relatively low without obvious changes of STA. At different
depths, the SSCNN model can reconstruct STA results with
anomaly amplitude and spatial distribution close to the Argo
observation.

C. Comparison of Seasonal Results

Fig. 5 illustrates how the SSCNN reconstruction error
and correlation coefficient vary with depth across months of
different seasons. Different types of graphs are used for RZ,
RMSE, NRMSE, and MAE because they represent different
aspects of model performance and provide distinct insights.
January, April, July, and October in 2015 are chosen as the
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target months to demonstrate the SSCNN performance for
winter, spring, summer, and autumn, respectively. In general,
the R2, RMSE, and MAE first increase and then decrease with
growing depth across different seasons, while the NRMSE
fluctuates in the increasing and decreasing trends with growing
depth. The overall reconstruction accuracy of SSCNN model
is highest in October with average R” of 0.494 and average
NRMSE of 0.094, followed by April with average R*> of
0.432 and average NRMSE of 0.102, July with average R” of
0.399 and average NRMSE of 0.093, and January with average
R? of 0.320 and average NRMSE of 0.096. The R? of October
within depth range of 100-150 m reflects a relatively obvious
correlation advantage with the highest value of 0.720, and its
NRMSE shows a lower value within depth range of 50-150 m
and a higher value within depth range of 700-1000 m. It is
possibly related to the positive dipole in Indian Ocean and the
corresponding high dipole mode index (DMI), which leads
to an unstable upper ocean dynamic environment. The R? of
January within depth range of 150-500 m presents a relatively
weak correlation with the lowest value of 0.134, and its RMSE
and MAE at most depths show a higher value. The R? of
April within depth range of 30-150 m reflects a fluctuation
trend of increasing and decreasing, and its NRMSE shows the
highest value of 0.153 at a depth of 30 m and the second
highest value of 0.136 at a depth of 100 m. The R? of July
within a depth range of 600-800 m presents a relatively weak
correlation, and its corresponding RMSE, NRMSE, and MAE
are medium, which is possibly related to the changes of Asian
summer monsoon. Overall, the SSCNN method is suitable
for reconstructing STA for different seasons in Indian Ocean,
as the model shows stable performance with good accuracy
across different seasons.

Fig. 6 depicts the spatial distribution of STAs reconstructed
by SSCNN at a depth of 100 m in Indian Ocean for four
months. The results show that SSCNN reconstruction results
are consistent with the STA of IPRC Argo data across different
months, and the spatial distribution of STA varies significantly
from January to October in 2015. Specifically, there exist
obvious negative anomaly signals in the equatorial western
Indian Ocean and positive anomaly signals in the equatorial
eastern area during January. Subsequently, ST warming in the
equatorial western Indian Ocean off the coast of eastern Africa
starts around April, weakens briefly around July, and then
reaches a high value of positive anomaly around October.
Correspondingly, ST cooling in the equatorial eastern area
starts around April and reaches a high value of negative
anomaly around October. It indicates that the subsurface dipole
of Indian Ocean is in a positive phase during this period.
The aforementioned changes of positive and negative STA are
well-presented in the SSCNN reconstruction results, which are
consistent with the actual situation in Indian Ocean.

Furthermore, the climatology values are added back
to the STA reconstructed by SSCNN, to obtain the ST
and further verify the precision with an independent
dataset of previous study. It is compared with the
ARMOR3D data (https://data.marine.copernicus.eu/product/
MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012),
which includes 3-D multiobservation product of the ocean
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Fig. 6. Spatial distribution of (Left) STA reconstruction results and (Right)
IPRC Argo data at depth of 100 m for: (a) January; (b) April; (c) July; and
(d) October in 2015.
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Fig. 7. Comparison of ST between SSCNN reconstruction and ARMOR3D
dataset in terms of: (a) R? and (b) RMSE.

temperature [13], [58], [59]. Fig. 7 shows the R? and RMSE
of ST between SSCNN reconstruction and ARMOR3D
dataset, which are obtained within the range of 25°E-120°E
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Fig. 8. Time series of SDI from January 2015 to June 2016 in Indian Ocean.

and 35°S-30°N for January, April, July, and October in 2015,
respectively. The average R? values of 16 standard depths
are 0.925, 0.923, 0.949, and 0.944 from January to October,
respectively, and the average RMSE values are 0.555, 0.509,
0.425, and 0.460, respectively. The results illustrate that the
reconstructed ST by the SSCNN model is consistent with
the ARMOR3D dataset. The R? gradually decreases starting
from a depth of 30 m and reaches its lowest point at a
depth of 125 m, after which it gradually fluctuates and raises
with increasing depth. Correspondingly, the RMSE gradually
increases starting from a depth of 30 m, reaches its lowest
value at a depth of 100 m, and then gradually decreases as
the depth increases.

D. Analysis of Subsurface Positive Indian Ocean Dipole

In order to further analyze the subsurface positive dipole
in Indian Ocean based on the STA reconstruction results by
SSCNN model, the subsurface dipole index (SDI) is calculated
according to [60]. The first step is to calculate the density of
seawater using temperature, salinity, and pressure data. Then,
the second step is to compute the heat content anomaly (HCA)
in upper ocean through multiplying the mean STA by density
and specific heat of seawater. Third, calculate the normalized
average HCA in western (5°S-5°N, 50°-70°E) and eastern
(5°S-5°N, 75°-95°E) regions of equatorial Indian Ocean.
Finally, subtract the normalized average HCA in eastern region
from that in western region to obtain SDI. It is important
to note that SDI is a measure of gradient in HCA across
the equatorial Indian Ocean, which has significant impacts on
climate variability.

Fig. 8 displays the time series of SDI in Indian Ocean
calculated using the STA reconstructions of SSCNN model
and STA observations of IPRC Argo data. The red solid line
represents the SDI calculated by STA observations of IPRC
data, the black solid line represents the SDI calculated by
STA reconstructions of SSCNN model, and the red dotted
line along with enclosed red shaded area corresponds to one
standard deviation of IPRC-SDI. The results demonstrate that
the SDI series obtained from STA reconstructions of SSCNN
model is consistent with that from STA observations of [PRC
data, remaining within a reasonable error range. Moreover,
the SDI series of STA reconstructions captures the same
dipole phenomenon as described in [60]. In 2015, the sub-IOD
lags behind the sea surface Indian Ocean dipole (ss-IOD) in
occurrence time. It emerges at the end of autumn, reaches
its peak during winter, and gradually ends in spring. The
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SDI values of STA reconstructions for June, July, and August
2015 have a relatively small error, which can be attributed
to the slow change of sea temperature in Indian Ocean during
this period. In contrast, the SDI values for September, October,
and November have a relatively large error, which is possibly
related to the occurrence of positive Indian Ocean dipole
(pIOD).

E. Comparison Experiments

To verify the superiority of proposed SSCNN method,
XGBoost (XGB) [15], [61], RF [22], [62], fully connected
neural network (FCNN) [63], Informer [64], ConvNeXt [65],
and temporal convolutional network (TCN) [66] are used as
comparison methods for analysis. In addition, to demonstrate
the effectiveness of Siamese CNN structure, a single-branch
spatial-temporal CNN (SCNN) is implemented for ablation
analysis. In order to comprehensively compare the reconstruc-
tion performance between SSCNN and other methods, all
18 months of six seasons from December 2014 to May 2016
are considered, as shown in Table IV. Concretely, the indica-
tors of winter in 2014 (2014-Win.), spring in 2015 (2015-Spr.),
summer in 2015 (2015-Sum.), autumn in 2015 (2015-Aut.),
winter in 2015 (2015-Win.), and spring in 2016 (2016-Spr.)
are the average results from December 2014 to February
2015, from March 2015 to May 2015, from June 2015 to
August 2015, from September 2015 to November 2015, from
December 2015 to February 2016, and from March 2016 to
May 2016, respectively. Overall, the SSCNN method basically
achieves the highest R? and the lowest RMSE, NRMSE,
and MAE in the STA reconstruction results of Indian Ocean
from 30 to 1000 m in most seasons.

Specifically, the R? of SSCNN is 0.006-0.092, 0.030-0.182,
0.013-0.163, 0.044-0.193, 0.024-0.206, and 0.026-0.218
higher than that of other methods from 2014-Win. to
2016-Spr., respectively. The p-values of paired-sample t-test
(two-sided) for the R? of 18 months are 3.51E-11, 3.51E-12,
2.75E-12, 1.98E-09, 2.24E-07, 5.65E-10, and 0.0006 between
SSCNN and XGB, RF, FCNN, Informer, ConvNeXt, TCN,
and SCNN methods, respectively. In terms of reconstruction
error, the RMSE of SSCNN is averagely 0.020, 0.020, 0.018,
0.029, 0.036, and 0.022 lower than that of other methods from
2014-Win. to 2016-Spr., respectively. The p-values of paired-
sample t-test (two-sided) for the RMSE of 18 months are
2.77E-08, 4.75E-09, 3.44E-09, 2.63E-06, 9.28E-05, 2.03E-07,
and 0.225 between SSCNN and other methods, respectively.
In order to eliminate the influence of STA outlier ranges on
error evaluation, NRMSE is adopted to make the comparison
more objective. The NRMSE of SSCNN is averagely 0.003,
0.008, 0.005, 0.008, 0.009, and 0.008 lower than that of
other methods from 2014-Win. to 2016-Spr., respectively. The
p-values of paired-sample t-test (two-sided) for the NRMSE
of 18 months are 8.34E-10, 1.86E-10, 1.07E-10, 1.53E-08,
1.33E-06, 4.00E-09, and 0.005 between SSCNN and other
methods, respectively. In terms of absolute error, the MAE
of SSCNN is averagely 0.010, 0.014, 0.012, 0.018, 0.022,
and 0.016 lower than that of other methods from 2014-Win.
to 2016-Spr., respectively. The p-values of paired-sample t-test
(two-sided) for the MAE of 18 months are 4.22E-09, 3.15E-09,
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TABLE IV
RECONSTRUCTION PERFORMANCE EVALUATION FOR SIX SEASONS BY COMPARISON METHODS
Indicator Season XGB RF FCNN  Informer ConvNeXt TCN SCNN SSCNN
2014-Win.  0.235 0.209  0.193 0.230 0.279 0.238  0.275 0.285
R2 2015-Spr. 0299 0.292  0.241 0.383 0.387 0.357  0.393 0.423
2015-Sum.  0.267 0.250  0.207 0.319 0.342 0.334 0357 0.370
2015-Aut. 0317  0.332  0.266 0.415 0.412 0.393 0410 0.459
2015-Win. 0393  0.386  0.321 0.455 0.469 0.446  0.503 0.527
2016-Spr. 0420 0.415 0.314 0.462 0.474 0474  0.506 0.532
2014-Win.  0.353  0.362  0.362 0.357 0.341 0.363  0.341 0.334
RMSE 2015-Spr. 0294 0.296  0.307 0.279 0.265 0.286  0.269 0.265
2015-Sum. 0.280 0.282  0.292 0.271 0.264 0.270  0.261 0.256
2015-Aut. 0302 0.305 0.324 0.283 0.278 0.293 0271 0.265
2015-Win.  0.358 0.364  0.381 0.340 0.339 0.350 0.312 0.313
2016-Spr.  0.297 0300  0.321 0.284 0.280 0.282  0.268 0.268
2014-Win.  0.108 0.109  0.110 0.108 0.104 0.108  0.104 0.104
NRMSE 2015-Spr. ~ 0.112  0.113  0.117 0.105 0.104 0.108  0.104 0.101
2015-Sum.  0.107 0.108  0.111 0.103 0.101 0.102  0.099 0.099
2015-Aut.  0.109 0.108 0.114 0.101 0.101 0.103  0.100 0.097
2015-Win.  0.099 0.100 0.104 0.094 0.093 0.095  0.089 0.087
2016-Spr. ~ 0.097 0.097  0.105 0.093 0.092 0.092  0.089 0.087
2014-Win.  0.228 0.232  0.236 0.226 0.220 0.230  0.220 0.217
MAE 2015-Spr. ~ 0.197 0.199  0.207 0.187 0.182 0.191  0.183 0.178
2015-Sum.  0.184 0.186  0.193 0.177 0.172 0.175  0.172 0.168
2015-Aut.  0.197 0.198  0.210 0.184 0.182 0.189  0.178 0.173
2015-Win.  0.227 0.232  0.242 0.216 0.214 0.220 0.204 0.200
2016-Spr. ~ 0.200 0.202  0.218 0.193 0.191 0.191  0.183 0.181
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Fig. 9. Spatial distribution of STA reconstruction results at depth of 100 m for October 2015 using: (a) XGB; (b) RF; (c) FCNN; (d) Informer; (¢) ConvNeXt;

(f) TCN; (g) SCNN; and (h) SSCNN.

2.96E-10, 2.54E-07, 7.59E-06, 3.83E-08, and 0.012 between
SSCNN and other methods, respectively. The XGB, RF, and
FCNN methods have relatively worse accuracy for STA recon-
struction since they lack the ability to automatically extract
the remote sensing features or effectively express the ST
relationships. The Informer, ConvNeXt, and TCN methods
have better reconstruction accuracy than traditional machine
learning methods, but they do not consider the distribution
differences of information in LON and LAT directions or
in various sea areas, thereby limiting the STA reconstruction
performance. The results of SCNN indicate that single branch
is insufficient for the parallel extraction of features at each time
and the comprehensive coupling of features from multiple time
series.

The spatial distribution of STA reconstruction results at a
depth of 100 m for October 2015 using XGB, RF, FCNN,
Informer, ConvNeXt, TCN, SCNN, and SSCNN methods is
shown in Fig. 9. These methods can reconstruct the main
positive anomaly signals in the equatorial central waters and
the main negative anomaly signals in the equatorial eastern
coastal waters, but the positive anomaly signals of FCNN are
obviously weaker than that of other methods. The negative
anomaly signals of SSCNN are more complete and continuous
than that of other methods, considering its cooperative infor-
mation extraction of spatial context and temporal sequence.
The results of XGB, RF, FCNN, and TCN methods are more
local and discrete than that of other methods in the LAT range
from 15°S to 30°S, showing a worse temperature distribution
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pattern. Overall, SSCNN method can improve the extraction
and fusion of multisource spatial-temporal features through
the design of multiscale regional division, asymmetric con-
volutional operation, and Siamese network structure, thereby
improving the accuracy of STA reconstruction.

VI. CONCLUSION

In this study, a novel SSCNN is proposed to improve
the accuracy of ST reconstruction in the Indian Ocean. The
input feature maps are constructed using remote sensing data
of SST and SSS, SWH, ADT, and SSW, combined with
geographic location information. Multiscale regional division
for accurate modeling, asymmetric convolutional operation
for enhanced extraction, and Siamese network structure for
spatial-temporal learning are designed in the SSCNN. The
spatial distribution of SSCNN reconstruction is consistent with
the IPRC Argo data. The R%, RMSE, and MAE of SSCNN
method first increase and then decrease with growing depth
across different seasons, while the NRMSE fluctuates in the
increasing and decreasing trends with growing depth. The
comparison experiments show that SSCNN method outper-
forms other methods of machine learning and deep learning
in reconstructing the STA of Indian Ocean from 30 to 1000 m.
The R? of SSCNN is 0.006-0.092, 0.030-0.182, 0.013-0.163,
0.044-0.193, 0.024-0.206, and 0.026-0.218 higher than that
of other methods from 2014-Win. to 2016-Spr., respectively.
The time series of SDI in Indian Ocean is calculated, and it
demonstrates that the SDI series obtained from reconstructions
of SSCNN model is consistent with that from observations of
IPRC data, remaining within a reasonable error range.

Overall, this study provides a promising approach for effec-
tively reconstructing the STA using remote sensing data and
deep learning methods, which also offers valuable insights for
analyzing the evolution of subsurface positive dipole in Indian
Ocean. The SSCNN method is suitable for open ocean areas
with sufficient Argo observational data. Further improvement
is needed in deep learning’s ability and accuracy for recon-
structing temperature from small samples in other high-LAT
areas. Additionally, further optimization is required by inte-
grating physical knowledge and oceanic equations for regions
such as straits and bays. In the future, more high-resolution sea
surface remote sensing data will be collected and employed to
improve the accuracy and resolution of STA reconstruction.
Moreover, deep learning methods will consider the remote
sensing information of sea surface over longer time series
and wider spatial contexts, and attention mechanism, self-
supervised learning, and prior knowledge will be integrated
to enhance the performance of deep learning model.
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