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Abstract— The rapid increase in the number of remote sensing
sensors makes it possible to develop multisource feature extrac-
tion and fusion techniques to improve the classification accuracy
of surface materials. It has been reported that light detection
and ranging (LiDAR) data can contribute complementary infor-
mation to hyperspectral images (HSIs). In this article, a multiple
feature-based superpixel-level decision fusion (MFSuDF) method
is proposed for HSIs and LiDAR data classification. Specifically,
superpixel-guided kernel principal component analysis (KPCA)
is first designed and applied to HSIs to both reduce the
dimensions and compress the noise impact. Next, 2-D and 3-D
Gabor filters are, respectively, employed on the KPCA-reduced
HSIs and LiDAR data to obtain discriminative Gabor features,
and the magnitude and phase information are both taken into
account. Three different modules, including the raw data-based
feature cube (concatenated KPCA-reduced HSIs and LiDAR
data), the Gabor magnitude feature cube, and the Gabor phase
feature cube (concatenation of the corresponding Gabor features
extracted from the KPCA-reduced HSIs and LiDAR data), can
be, thus, achieved. After that, random forest (RF) classifier
and quadrant bit coding (QBC) are introduced to separately
accomplish the classification task on the aforementioned three
extracted feature cubes. Alternatively, two superpixel maps are
generated by utilizing the multichannel simple noniterative clus-
tering (SNIC) and entropy rate superpixel segmentation (ERS)
algorithms on the combined HSIs and LiDAR data, which are
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then used to regularize the three classification maps. Finally,
a weighted majority voting-based decision fusion strategy is
incorporated to effectively enhance the joint use of the multi-
source data. The proposed approach is, thus, named MFSuDF.
A series of experiments are conducted on three real-world data
sets to demonstrate the effectiveness of the proposed MFSuDF
approach. The experimental results show that our MFSuDF can
achieve the overall accuracy of 73.64%, 93.88%, and 74.11%
for Houston, Trento, and Missouri University and University of
Florida (MUUFL) Gulport data sets, respectively, when there are
only three samples per class for training.

Index Terms— Feature extraction, feature fusion, hyperspectral
image (HSI), light detection and ranging (LiDAR), superpixel
segmentation.

I. INTRODUCTION

RECENTLY, with the rapid development of remote sens-
ing techniques, it has become feasible to capture multi-

source images for the same surveyed scene [1]. Concretely,
due to technical and cost limitations, each type of remote
sensing sensor is designed to operate at given wavelengths,
which typically has a few observation purposes and obtains
only specific information. By using diverse sensors in the same
zone, multiple types of images with different properties can
be acquired. The advanced technology makes it possible to
collect various aspects of data for the same surveyed area on
the earth [2]. The representative and important information
includes spectral and spatial information of hyperspectral
images (HSIs), height and shape information of light detec-
tion and ranging (LiDAR) data, and texture information of
synthetic aperture radar (SAR).

In particular, among numerous sources of imagery, HSIs
acquired by airborne sensors, with wavelengths that cover
visible and near-infrared channels, contain reflected spectra
with hundreds/thousands of bands for each pixel on the
earth’s surface [3]. Compared with other traditional remote
sensing data, HSIs with narrower spectral bands and more
imaging channels can greatly improve the ability to distin-
guish objects. Especially, HSIs have piecewise smoothness
in both the spectral and spatial domains, leading to highly
correlated relationships between neighboring pixels. For the
purpose of classifying HSIs, a large number of classifica-
tion methods have been proposed, including spectral band
analysis [4]–[6], support vector machines (SVMs) [7], [8],
sparse representation-based classification (SRC) [9]–[11], and
random forest (RF) classification [12]–[14].

However, the rich details contained in both the spatial
and spectral domains of HSIs not only bring opportunities
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to improve material classification accuracies but also pose a
series of challenges in this field [15], [16]. On the one hand,
raw HSIs have a large amount of redundant and correlated
spectral information. When the number of training samples is
fixed, the continued growth of the spectral dimension of HSIs
will deteriorate the classification accuracy. This problem is the
so-called Hughes phenomenon [17], [18]. Furthermore, in the
process of data acquisition, it has been shown that hyperspec-
tral remote sensing images are easily affected by clouds and
cloud shadows [19]. Due to these shortcomings, the classifiers
that use only the spectral characteristics of training samples
inevitably neglect the important spatial clustering distribution
information between labeled and unlabeled pixels, which leads
to the fact that the classification accuracy is always plagued by
the small sample size problem and cannot be greatly improved
in practice.

For the abovementioned reasons, taking advantage of mul-
tisource data, i.e., images captured from different sensors,
can help address the small sample size problem. In partic-
ular, the fusion of HSIs and LiDAR data was demonstrated
to be beneficial for providing higher classification accuracy
than the use of each source individually [20]. Generally,
the LiDAR data can contribute potential details for HSIs, such
as the height and shape information of land-cover objects,
which can improve the HSI classification accuracy [21]. When
objects in HSIs are covered by clouds, the LiDAR data can
provide supplementary information for the cloudy regions.
More importantly, the LiDAR data can indicate the spatial
information of the areas in HSIs, which leads to the need for
HSIs and LiDAR fusion.

In the literature, many techniques for HSIs and LiDAR
data fusion have been developed for the purpose of classi-
fication [22]–[27]. Concretely, HSIs and LiDAR data fusion
methods can be categorized into pixel-based, feature-based,
and decision-based. The pixel-based fusion methods combine
information of different images on a pixel-by-pixel basis.
Pixelwise details are merged from multisource data, but
they are easily affected by noise. The strategy of feature-
based fusion methods is to integrate extracted features from
different images [28], [29]. Specifically, features extracted
from multisource data are combined to create feature vectors
for classification. The accuracy of target recognition after
feature-based fusion is obviously higher [30], [31]. However,
these methods extract image features as fusion information,
so many details can be lost. For decision-based fusion meth-
ods, different data sources are combined in a higher level
of integration [32], [33]. Image data from various individual
sensors are first categorized and then merged to incorporate
the output of the categorization. In general, the computational
complexity of the decision-based fusion methods is minimal,
but it is strongly dependent on the categorization results.
In summary, the abovementioned methods all have limitations;
thus, developing an approach to alleviate these disadvantages
is encouraged.

Since image data from multiple platforms carry distinct
information, it is important to fuse the features appropriately
to improve the classification performance of materials on the
surface and consequently increase the quality of the mapping.

For this reason, developing an effective method to extract
features from images and establishing multisensor data fusion
techniques to further improve the discrimination ability of
classifiers is essential [34]. Raw HSIs contain a massive
amount of redundant information, which can degrade classifi-
cation performance. Therefore, an appropriate dimensionality
reduction approach must be used to reduce redundancy [35].
To date, there are a variety of dimensional reduction meth-
ods, such as low-variance filters, Fisher’s linear discrimi-
nant analysis (FDA) [36], independent component analysis
(ICA) [37], isometric embeddings (ISOMAP) [38], locally
linear embedding (LLE) [39], and principal component analy-
sis (PCA) [40]. Among them, kernel principal component
analysis (KPCA), as a generalization of PCA, has been proven
to be a more effective dimensionality reduction approach
for nonlinear data, such as multisource remote sensing data
[41], [42]. However, it is unrealistic to directly apply KPCA on
HSIs since the computational burden of the covariance matrix
is totally unaffordable. Besides, 2-D morphological feature
extraction methods have been exploited for HSIs and LiDAR
data classification. Nevertheless, HSIs are regarded as 3-D data
cubes with rich spectral and spatial information. Therefore,
the extracted 2-D morphological features cannot sufficiently
represent the joint spectral–spatial structure [43]. Furthermore,
Gabor wavelets are powerful tools that can achieve optimal
feature representation. Numerous tools have been successfully
applied to extract features for face recognition, medical imag-
ing, and so on. It has been found that the Gabor features can
present more discriminative image features than other features
in these applications [44], [45].

In recent years, with the growing maturity and wide applica-
tion of superpixel segmentation algorithms in computer vision
tasks, the interconnection between superpixel extraction and
HSI classification has gradually become an active research
field [46]–[48]. The well-known explanation for superpixels
is to group together some pixels with similar characteristics
to form a more representative, larger element [49]. This
new element will be used as the basic unit of other image
processing algorithms [50]. More precisely, superpixel seg-
mentation is a process of tagging each pixel in an image. The
advantage of superpixel segmentation is that it greatly reduces
the dimensions of decision fusion by simultaneously removing
abnormal pixels [51].

This article is organized as follows. Section II provides an
overview of the proposed multiple feature-based superpixel-
level decision fusion (MFSuDF) approach. In Section III,
the background of related works, including the Gabor wavelets
and superpixel algorithms, is introduced. Section IV describes
the proposed methodological framework in detail. Section V
presents the experimental setup and the result analysis on three
real data sets. Finally, Section VI provides the conclusion and
future work for this article.

II. OVERVIEW OF MFSUDF

In this article, an MFSuDF framework that takes full
advantage of feature discriminability of different modules and
superpixel structure is proposed for HSIs and LiDAR data
classification. First, a superpixel-guided KPCA is presented
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Fig. 1. Flowchart of the proposed MFSuDF method for hyperspectral and LiDAR data classification.

and utilized to reduce the dimensions of HSIs, which optimizes
the computing resources and improves the speed of subsequent
data processing. Moreover, KPCA with a superpixel guided
manner can make the information-focused and irrelevant fac-
tors ignorable. Second, the 3-D Gabor filters with different
scales and orientations are convolved with the information-
focused HSIs features, and correspondingly, the 2-D Gabor
wavelets are applied to LiDAR data that possess only a single
band. To make full use of the obtained information, the Gabor
texture feature is further divided into two parts according to
magnitude and phase. Therefore, features relating to three
aspects of HSIs and LiDAR data are obtained. Subsequently,
the HSIs and LiDAR features of each aspect are concatenated
as raw data-based features (i.e., the KPCA-reduced HSIs
and LiDAR data), the Gabor magnitude features, and the
Gabor phase features. As an effective classifier that could well
handle the imbalanced circumstance of the training set, RF is
employed on the previous two energy-based features.

Alternatively, the Gabor phase feature would cause
additional classification errors when using conventional clas-
sification methods due to its instability. Quadrant bit cod-
ing (QBC) and Hamming distance metrics provide a novel
sample similarity calculation for the Gabor phase. Ultimately,
three separate classification maps can be, thus, obtained. In the
other part, two algorithms that can control superpixel size,
simple noniterative clustering (SNIC), and entropy rate super-
pixel segmentation (ERS) are extended and adopted to extract
superpixel maps by jointly utilizing the HSIs and LiDAR
data. Through independently applying the two superpixel
maps on the three classification maps, six regularization maps
are obtained. Finally, in order to take full advantage of the
complementarity among various maps, both the regularization
maps and pixelwise classification maps are addressed through
a weighted fusion procedure, and thus, the final classification

can be achieved. The proposed MFSuDF method is illustrated
in Fig. 1. More precisely, the contributions of our method are
listed as follows.

1) First, different from previous methods that only
considers partial aspects of the Gabor description,
the Gabor wavelet-based feature representation is thor-
oughly exploited in our proposed MFSuDF method.
On one hand, the 3-D Gabor filters, which are perfectly
in line with the joint spatial–spectral characteristics of
HSIs, is adopted. Meanwhile, both 3-D Gabor magnitude
and phase features, which, respectively, represent the
intensity and variation in the local region, are employed.
On the other hand, the LiDAR data containing elevation
information have only one band, which could be well
characterized by the 2-D Gabor filters, and the corre-
sponding 2-D Gabor magnitude and phase features are
taken into account. Evidently, due to the high representa-
tive capability of the Gabor-based features and comple-
mentary properties of HSIs and LiDAR data, it is very
desirable to exploit the extracted features in a unified
framework. Therefore, all the four Gabor-based feature
modules, including both 3-D and 2-D Gabor magnitude
and phase features, are collaboratively investigated, and
the classification accuracy can be significantly improved
compared with the 2-D Gabor on HSIs and LiDAR band
by band or the 3-D Gabor on HSIs and LiDAR fused
data.

2) Second, the superpixel regularization procedure is spe-
cially optimized. In our method, two superpixel maps
generated by different strategies (i.e., graph-based ERS
and cluster-based SNIC) are incorporated for regular-
ization rather than a single map. Indeed, the number
of homogeneous regions in the superpixel map plays
a vital role in the regularization procedure, and the
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proposed two superpixel map-based regularizing scheme
can essentially enhance the resistance to oversegmenta-
tion or undersegmentation in superpixel segmentation.
Furthermore, the idea of multitask learning is sufficiently
exploited. Through separately applying the two super-
pixel maps on the classification maps achieved from
three kinds of features, two of which are Gabor magni-
tude and phase, while the other one is the combination
of KPCA-reduced HSIs and LiDAR data. Confidently,
the complementary information contained in the three
pixelwise classification maps and six regularized maps is
concentrated in the final map through a majority-voting
strategy, and the robustness of the proposed approach
can be guaranteed.

3) Third, a superpixel-guided sample extraction method
is proposed to optimize the KPCA calculation process
instead of random selection. Due to the high computa-
tional requirement of KPCA, it is infeasible to directly
apply KPCA on the whole HSIs, and a small number of
representative samples should be picked out to reduce
calculation. Fortunately, since the homogenous attribute
of each superpixel could be well characterized by a
superpixel map (here, the ERS method is selected),
the superpixel guidance manner can not only guarantee
the availability of KPCA computation but also signifi-
cantly reduce the amount of calculation. Alternatively,
it is worth mentioning that our framework is an unsu-
pervised feature manipulation method, which means that
prior knowledge is not required in feature extraction
and superpixel segmentation, and the adaptability of
our method can be ensured. Besides, our framework
erodes the influence of artificial factors on the classi-
fication results (through multitasking decision fusion),
which also reduces the labor and time costs of object
identification.

To confirm the effectiveness of our framework, a series of
related experiments are designed and conducted. The training
samples are selected randomly, and the test samples are
derived from the rest of the image. To reduce the risk raised by
sample selection, each experiment is run 20 times. The results
of three real-data experiments show that the MFSuDF method
achieves better performance than the other parallel methods.

III. BACKGROUND

This section introduces the background of the KPCA, Gabor
wavelets, and superpixel segmentation algorithm.

A. Kernel Principal Component Analysis (KPCA)

KPCA is an efficient dimensionality reduction approach that
has been widely applied to obtain low-dimensional mapping
features for high-dimensional data sets [52]. Comparatively,
as a nonlinear generalization of PCA, KPCA is proposed
to solve the complex structure of the original data. It uses
kernel functions to map known low-dimensional data to high-
dimensional data and then conducts PCA in high dimensions.
The computational process of the whole high-dimensional
space involves the inner product, which can be computed by

using the kernel function in the original space. Concretely, for
a given nonlinear mapping, the input data h = (h1, h2, . . . , hn)
(where n represents the number of samples) can be mapped
into a higher or infinite dimensional Hilbert space. Assuming
that new features are centered and denoted by �(h) =
(�(h1),�(h2), . . . ,�(hn)), the covariance matrix is defined
in the high-dimensional feature space as follows:

C = 1

n

n∑
i=1

�(hi )�(hi )
T . (1)

The eigenvector and eigenvalues can be computed by

Cβ = λβ (2)

where λ = diag(λ1, λ2, . . . , λn) is a diagonal matrix, and β =
(β1,β2, . . . ,βn) is an n ×n matrix composed of eigenvectors.
β can be also expressed by

β = (β1,β2, . . . ,βn)

= (�(h)α1,�(h)α2, . . . ,�(h)αn) = �(h)α (3)

where α = (α1,α2, . . . ,αn) is an n × n coefficients matrix.
Then, by considering the equation

�(h)T Cβ = �(h)T λβ (4)

and substituting (1) and (3) into (4), we can obtain the
following equation:

nλα = Kα (5)

where K is the kernel matrix and Ki, j = �(hi )
T �(h j).

Just like PCA, KPCA has similar steps to conduct feature
extraction and dimensionality reduction on the kernel matrix.

B. Gabor Wavelets

The 2-D Gabor wavelets of the spatial domain are based
on the theory of a 1-D Gabor transform, which was first
proposed by Dennis Gabor in 1946 [53]. As an extension of
1-D Gabor wavelets, the 2-D Gabor function is defined as the
sinusoidal wave (a kind of plane wave for 2-D Gabor filters)
multiplied by a Gaussian function [54]. The characteristics of
the 2-D Gabor function are similar to those of the human visual
system and have better abilities to represent local structural
information. Meanwhile, the 2-D Gabor wavelets formed by
Gabor functions have the advantages of optimal localization
in both the spatial and frequency domains. Therefore, it could
be effective in extracting texture feature representations. More
precisely, in the spatial domain (x, y), the 2-D Gabor wavelets
are defined as follows:
� f,θ (x, y) = 1

2πσ 2
exp( j2π(x f cos θ + y f sin θ))

× exp

(
− x2 + y2

2σ 2

)
(6)

where f and θ represent the central frequency and orientation,
respectively. σ is the width of the Gaussian envelope function
in the spatial domain (x, y). Generally, with different scales
and orientations, a group of Gabor wavelets is predefined to
extract discriminative features for LiDAR data analysis, which
is just in a 2-D form.
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Similar to the derivation procedure of 2-D Gabor wavelets,
the 3-D Gabor wavelets are the 3-D extension of the cor-
responding 1-D wavelets [55]. Clearly, it can capture dis-
criminative information on local areas in joint spatial–spectral
correlations. Suppose that there is a given location (x, y, b)
in the 3-D domains, and the 3-D Gabor wavelets can be
defined by [56]

�̂ρ,ϑ,ϕ(x, y, b) = 1

(2π)2/3τ 3
exp( j2π(xu + yv + bw))

× exp

(
− x2 + y2 + b2

2τ 2

)
u = ρ sin ϕ cos ϑ, v = ρ sin ϕ sin ϑ,w = ρ cos ϕ

(7)

where ρ and (ϑ, ϕ), respectively, denote the central frequency
of the sinusoidal wave and the orientation of the 3-D Gabor
wavelet in the frequency domain (u, v,w). Similarly, τ is
the width of the Gaussian envelope. Finally, by changing the
frequency and orientation, a set of 3-D Gabor wavelets is
obtained, which can be utilized to extract features from HSIs
with any data transformation.

The extracted Gabor feature can be divided into the mag-
nitude and phase parts. Generally speaking, the magnitude
feature is stable and smooth, which actually reflects the local
energy spectrum of the image. In fact, the magnitude feature
can also be understood as the intensity of the edge in a specific
direction, which is of great significance to the matching and
recognition of the image. Alternatively, the phase feature is
very unstable, which changes sharply even within a short
distance. Fortunately, recent advances have revealed that a
proper encoding scheme could make good use of the Gabor
phase feature.

C. Superpixel Segmentation

ERS segmentation is an efficient and greedy segmenta-
tion algorithm for obtaining superpixels of image. Compared
with the NCut and watershed superpixel algorithms, ERS
possesses both a relatively fast computational speed and
satisfactory superpixel segmentation. For a given undirected
graph G = (V , E), where V denotes the set of vertices and
E includes the set of edges, it is expected that the resulting
graph G ′ = (V , A) consists of T connected subgraph, where
A ⊆ E and T is the number of superpixels. Suppose that wi, j

denotes the weight of the edge ei, j between points υi and υ j ,
and then, the transition probabilities pi, j and the weight of the
i th vertex μi are, respectively, defined as

wi =
∑
υ j ∈V

wi, j ; μi = wi∑
υ j ∈V w j

pi, j (A) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wi, j

wi
if i �= j and ei, j ∈ A

0 if i �= j and ei, j /∈ A

1 −
∑

j :ei, j ∈A wi, j

wi
if i = j.

(8)

Thus, the entropy rate with a random walk H(A) that
determines the cluster compact and homogeneous can be

calculated by

H(A) = −
∑

i

μi

∑
j

pi, j(A) log(pi, j (A)). (9)

In contrast, let SA = {S1, S2, . . . , SNA } represent the inter-
mediate process, where NA is the number of connected compo-
nents, and then, the distribution entropy H (A) is computed by

H (A) = −
∑

i

pA(i) log(pA(i)) (10)

where

pA(i) = Si

|V | , i = 1, 2, . . . , NA. (11)

Therefore, the balancing term that controls the number of
clusters and similar size between clusters can be defined as

B(A) = H (A) − NA. (12)

The ERS algorithm proposes an objective function to lin-
early associate the entropy rate with a random walk and a
balancing term, which is defined by

max
A

H(A) + γB(A)

s.t. A ⊆ E and NA ≥ T (13)

where γ ≥ 0 is the weight of the balancing term. Although
the entropy rate with a random walk and the balancing term is
increasing when adding any one edge into a set A, there is no
doubt that the compact construction relies on the maximization
of the objective function. It is worth mentioning that the
value of γ is automatically adjusted based on the number of
superpixels.

Alternatively, the SNIC algorithm is an improvement of the
simple linear iterative clustering (SLIC) algorithm. It shows
great potential in superpixel segmentation because of its low
computational complexity and good segmentation results [57].
The definition of distance is the same as that in the SLIC algo-
rithm. The input image consists of the a device-independent
color space (CIELAB) color space c and spatial coordinates
x, and the distance between pixel i and j is calculated by

di, j =
√

ω1‖ci − c j‖2 + ω2‖xi − x j‖2 (14)

where ω1 and ω2 represent the weight of the color space
and coordinate space, respectively. Similar to SLIC, the SNIC
algorithm starts with centroid initialization, and a priority
queue Q is used to evaluate the distance between pixels and
centroids. Specifically, it begins with adding centroids into the
priority queue, and the process of selecting the element that
has the smallest distance, updating the value of the centroid,
labeling element adjacent to the current pixel, and pushing it
into the priority queue is continued until Q is empty.

IV. PROPOSED MFSUDF METHODOLOGY

As shown in Fig. 1, our MFSuDF methodology has
three main steps. In the first part, the Gabor wavelets are
used to extract representative local texture information from
superpixel-guided KPCA features of HSIs and LiDAR data,
respectively. Subsequently, classifiers are applied to the Gabor
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TABLE I

DEFINITIONS OF THE MATHEMATICAL SYMBOLS USED IN THIS ARTICLE

(both magnitude and phase) and KPCA features to gener-
ate three separate classification maps. In the second part,
the ERS and SNIC superpixel segmentation algorithms are,
respectively, adopted to generate two superpixel maps from the
integrated HSIs and LiDAR data. In the last part, a weighted
fusion method is employed to effectively address the three
classification maps and six corresponding superpixel regular-
ized ones, and the complementary information inside each map
can be sufficiently utilized. To facilitate the description of the
following sections, we define some notations in Table I.

A. Generation of Three Classification Maps

1) Superpixel-Guided KPCA for Dimension Reduction: Due
to the high correlation between neighboring bands of HSIs,
the Gabor features extracted and directly data concatenation
of raw HSIs and LiDAR data are high-dimensional and
redundant. As a nonlinear dimensionality reduction method,
KPCA is very suitable for hyperspectral data preprocessing.
In particular, there are two methods to select samples for
KPCA. When the data set is small, KPCA is generally
performed on all data samples. Otherwise, a limited number
of samples are randomly picked out from the large data set
for feature extraction of KPCA. Clearly, the sample selection
strategy should describe the characteristics of the whole data
set as far as possible, which is a key factor for KPCA and
the following manipulation. Concerning HSIs with a large
number of samples, since superpixel segmentation could well
reflect the spatial structure of objects, it is natural to introduce
superpixel map to guide the sample selection of KPCA, and
thus, a superpixel-guided sample selection method is proposed
for the KPCA-based dimension reduction (here, the ERS
method is utilized due to its efficiency).

Let H ∈ R
X×Y×B be the raw HSIs, where X , Y , B ,

respectively, represents the spatial–spectral dimension.
Obviously, it is infeasible to conduct all the samples for
KPCA since the corresponding kernel matrix K ∈ R

XY×XY

is extremely huge. Fortunately, in our superpixel-guided
KPCA method, the ERS method is first applied on H to
get the superpixel map (here, the number of superpixel
is simply set as X + Y ). Then, the mean vector of each
superpixel is computed, which are collected together to form
the sample set h = (h1, h2, . . . , hX+Y ). Correspondingly,
the size of kernel matrix K (here, the Gaussian kernel

Ki, j = �(hi)
T �(h j ) = exp(−‖hi − h j‖2/2) is adopted) is

only (X + Y ) × (X + Y ), which not only greatly decrease
the storage requirement and computational burden but also
guarantee the representativeness of the sample set. In general,
99% energy contained in the principal components of KPCA
are kept, and the resultant KPCA feature cube HK ∈ R

X×Y×BK

can be achieved, where BK is the number of compressed
dimension in the spectral domain and much smaller than B .

2) Gabor Feature Extraction for HSIs and LiDAR Data:
Considering the distinct information between HSIs and LiDAR
data, 3-D and 2-D Gabor wavelets are utilized at the same
time.

In terms of 3-D data classification, it is desirable to uti-
lize the joint spectral–spatial information of objects, which
can present spatial regularities and spectral similarity in a
scene [56]. In this part, the 3-D Gabor filters are applied
on HSIs for feature extraction. Considering a Gabor wavelet
�̂ρ,ϑ,ϕ (7) with a center frequency ρ and orientation (ϑ , ϕ),
at location (x, y, b), the signal variances ĝ(x, y, b) can be
expressed as

ĝ(x, y, b) = (HK ⊗ �̂ρ,ϑ,ϕ)(x, y, b) (15)

where ⊗ denotes the convolution operation. For the purpose
of extracting the most discriminative spectral–spatial features
from HSIs, only the wavelets with direction that is parallel
to the spectral axis are kept, while others are excluded (the
Gabor magnitude and phase cubes in this direction possess
clear local texture feature and distinct homogeneous region,
while the others are less informative) [45], and the parameters
of 3-D Gabor filters are set as follows:

ρ ∈ [0.5, 0.25, 0.125, 0.0625]
ϑ = 0, ϕ = 0. (16)

The feature vectors of all objects, denoted by GH ∈ R
X×Y×4BK ,

at location (x, y) can be generated by concatenating the
complex of the convolutional calculation:

GH(x, y) = [ĝ1(x, y, 1 : BK ), . . . , ĝ4(x, y, 1 : BK )]. (17)

Alternatively, since the LiDAR-derived digital surface
model (DSM) only has a single band, its corresponding texture
feature of elevation information can be extracted by 2-D Gabor
wavelets. Similarly, the 2-D Gabor features can be obtained
by convolving the LiDAR data with 2-D Gabor filters (6) as
follows:

g(x, y) = (L ⊗ � f,θ )(x, y) (18)

where L ∈ R
X×Y denotes the LiDAR data. In order to acquire

sufficient discriminative information for classification, the two
parameters, f and θ , are set as follows [58]:

f ∈ [0.03589, 0.09473, 0.25, 0.6577]
θ ∈ [0, 40, 80, 120, 160, 180]. (19)

As a result, 24 filters with four scales and six orientations are
concatenated to create a Gabor feature vector

GL(x, y) = [g1(x, y), . . . , g24(x, y)]. (20)
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Fig. 2. Working principle of QBC.

After the convolution operator is applied on all samples, the
2-D Gabor feature of LiDAR data GL ∈ R

X×Y×24 can be
achieved.

3) Feature Fusion and Classification: Sections IV-A1
and IV-A2, respectively, describe superpixel-guided KPCA
and Gabor feature extraction. In this section, to make full use
of the texture information produced by the Gabor wavelets,
GH and GL are divided into two parts according to the phase
angle and magnitude, called PH and MH, and PL and ML,
respectively, [59]. Then, data with different types of infor-
mation are categorized, and LiDAR features are concatenated
with HSIs features. This process is expressed by the following
formulation:

MH =
√

Re(GH)2 + Im(GH)2

PH = arctan(Re(GH), Im(GH))

ML =
√

Re(GL)2 + Im(GL)2

PL = arctan(Re(GL), Im(GL))

R = [HK , L]; P = [PH, PL]; M = [MH, ML] (21)

where Re and Im stands for getting the real and imaginary
parts, respectively, of complex numbers. It is worth to point
out that except the phase P ∈ R

X×Y×(4BK +24) and magnitude
M ∈ R

X×Y×(4BK +24) feature, the KPCA feature HK integrated
with L, which is denoted as R ∈ R

X×Y×(BK +1), is also
considered for further processing.

Due to the different characteristics of extracted features
(the stability of R and M is clearly higher than P), it is
essential to select appropriate classifiers to discriminate these
features. Concretely, the RF classifier has advantages in many
aspects, such as resistance to overfitting and insensitivity to
noise [60]. Compared with SVMs, the RF classifier not only
has an advantage in computational simplicity and classification
time but also achieves a similar accuracy [61]. It is made up
of decision trees and bagging sampling techniques. The RF
algorithm can be divided into two parts: randomly selecting
repeatable training subsets and building multiple decision
trees. In our experiments, the RF classifier is applied to R,
which reflects the spectral–spatial characteristics, as well as M,
which contains the Gabor magnitude information. The number
of trees is set to 500, and the default subspace is the floor of
the logarithmic value of the features.

Besides, QBC is a parameter-free unsupervised classifica-
tion method [45], [62], which provides a feasible way to
encode the discriminative information of the Gabor phase. The
working principle of QBC is to encode phase information P

on the basis of the quadrant that the phase angle locates in.
For a Gabor phase feature vector Px,y,4BK +24 in the spatial
position (x, y), one element Px,y,z (z = 1, 2, . . . , 4BK + 24)
in the vector can be encoded by

Qx,y,z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

11 if Px,y,z ∈
(

0,
π

2

]
01 if Px,y,z ∈

(π

2
, π

]
00 if Px,y,z ∈

(
−π,−π

2

]
10 if Px,y,z ∈

(
−π

2
, 0

]
.

(22)

Fig. 2 shows the coding rule of QBC. Subsequently, the
Hamming distance D is used to measure the similarity between
an unlabeled point (u1) and a labeled point (u2) with the
relevant coding vector Qu1

∈ R
(4BK +24) and Qu2

∈ R
(4BK +24)

Du1,u2 =
2(4BK +24)∑

i=1

(Qu1,i XOR Qu2,i ) (23)

where i represents the i th bit in coding vector Qu1
or Qu2

,
and XOR is the exclusive OR operator. For an unlabeled
sample, it would tag the same label as the training sample
that corresponds to the minimum D.

Suppose there are m training samples from C classes, in this
way, three classification maps, CR, CM, and CP, derived
from the KPCA-based features R, Gabor magnitude M, and
Gabor phase P, respectively, are generated, which have the
same dimensions, i.e., R

X×Y , and the value of each pixel is
within [1, . . . , C].
B. Generation of the Superpixel Map

Superpixels, regarded as the gathering of some adjacent
pixels within the same class, have been confirmed to improve
the classification accuracy. In this article, the ERS and SNIC
segmentation algorithms are employed to produce two types
of superpixel maps for latter decision fusion.

In order to take advantage of multisource data, HSIs and
LiDAR data are joint as concatenated data J, which can be
expressed as J = [H, L] ∈ R

X×Y×(B+1). Since the ERS algo-
rithm formulates the superpixel segmentation problem as an
optimization problem presenting an objective function by the
graph topology, the concatenated data J are first transformed
into an undirected graph G = (V , E). It is worth to point out
that the edge weight is directly computed from J rather than
PCA-reduced data. Then, for a given number of superpixel T ,
through optimizing the objective function that consists of two
elements [the entropy rate of the random walk on G and the
balancing term of the cluster distribution, as shown in (13)],
the resulting segmentation map SE is obtained [63].

SNIC shows great potential for superpixel segmentation
because of its low computational complexity and good seg-
mentation results [57]. In order to make SNIC directly applica-
ble in hyperspectral and LiDAR data combination, we extend
the three-channel color space given in (14) to the multichannel
space for SNIC algorithm, and the distance between pixel i
and j is calculated by

di, j =
√

ω1‖Ji − J j‖2 + ω2‖xi − x j‖2 (24)
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where ω1 and ω2 are, respectively, set as 1/(B + 1) and 0.5.
Eventually, for a given number of superpixel T , the super-
pixel map SN can be generated. It is worth mentioning that
more superpixel segmentation algorithms can be imported
into the proposed MFSuDF approach, whereas the overall
accuracy (OA) is not expected to improve substantially due
to less supplementary information of the added superpixel
segmentation maps.

C. Superpixel-Based Decision Fusion

In the previous steps, three classification maps (CR, CM,
and CP) and two superpixel maps (SN and SE ) are obtained.
It can be easily observed that the three classification maps
are generally considered for pixelwise classification with a
single-type feature. Meanwhile, the superpixel maps (either
SN and SE ) can well characterize the spatial structure of
objects, which could be utilized to regularize the pixelwise
classification maps. Specifically, for simplicity, let C stand
for the classification map (CR, CP, and CM), while S be the
superpixel map (SN and SE ). Accordingly, the regularized map
Z can be computed by

Z(t) = arg max
c=1,...,C

∑
j∈S(t)

I(C( j), c), t = 1, . . . , T (25)

where C and T are, respectively, the number of classes and
superpixels, S(t) is the tth superpixel in S, and C( j) is the
predicted class of the j th pixel. Besides, the function I is
defined by

I(t1, t2) =
{

1 if t1 == t2
0 otherwise

(26)

which means that the predicted label of S(t) is the mode of all
the sample labels contained in this superpixel.

After correction by superpixel segmentation, six interme-
diate classification maps (Zl , l = 1, . . . , 6) are obtained by
pairwise interaction between the three classification maps and
two superpixel maps. However, the regularized maps may have
overlap error, and each of them performs differently on the
peripheral point of the superpixel segmentation. Especially,
when the sample number of some classes in the scene is
small and the distribution is not concentrated, the superpixel-
guided method could have a negative impact on the classi-
fication result. Therefore, to further enhance the robustness
of the proposed MFSuDF methodology, the three pixelwise
classification maps, including CR, CM, and CP, are also taken
into account. Finally, the majority voting mechanism is applied
on both the six intermediate maps (Zl , l = 1, . . . , 6) and
three pixelwise classification maps, and the final map F is
determined by

F(i) = arg max
c=1,...,C

[
6∑

l=1

I(Zl(i) , c) + 2
3∑

k=1

I(Ck(i) , c)

]

i = 1, . . . , XY ; Ck ∈ {CR, CM, CP} (27)

where the weight of three pixelwise classification maps is
granted as 2 to make the voting procedure more fair. The
experiments demonstrate that the decision fusion strategy of

Fig. 3. Ground-truth map of the Houston data set (15 land-cover classes).

Fig. 4. Ground-truth map of the Trento data set (six land-cover classes).

the various kinds of features can effectively increase the
classification accuracy.

The computational complexity of our proposed MFSuDF
can be roughly divided into two parts: unsupervised (includ-
ing superpixel segmentation, ERS-guided KPCA, and Gabor
feature extraction) and supervised (including the classification
and decision fusion). Specifically, the complexity of two
superpixel segmentation methods (ERS and SNIC) is, respec-
tively, O(XY log(XY )) and O(XY ). After that, the complex-
ity of ERS-guided KPCA is O((X + Y )2 + XY log(XY )).
Besides, for each Gabor filter, the computational complexity
is O(XY B log(XY B)) (it is worth to point out that the
Gabor filters with only one orientation are reserved in the
proposed approach). Alternatively, for the supervised part,
the complexities of the QBC classifier and RF classifier are
O(XY B) and O(XY log(B)), respectively, while the decision
fusion part is O(XY ). Since the unsupervised part can be
carried out only once, while the supervised part is linear to the
spatial coverage, the computational efficiency of our MFSuDF
method can be well guaranteed.

V. EXPERIMENTS

A. Data Sets

1) Houston Data Set: The data set captured over the
University of Houston campus and its neighboring regions
is used in the experiment [20]. The Houston HSI data set
contains 144 spectral bands ranging from 380 to 1050 nm,
and each band has 349 × 1905 pixels with 2.5-m spatial
resolution. Meanwhile, the corresponding LiDAR data also are
the size of 349 × 1905 with the height information of surface
materials; 15 land-cover classes and 15 029 labeled samples
are given in the ground-truth image, as shown in Table II
and Fig. 3.

2) Trento Data Set: The second data set is collected over
the south of Trento, Italy, consisting of 63 spectral bands
that range from 400 to 980 nm [29], [64]. Each band is
600 × 166 pixels with a spatial resolution of 1 m. Likewise,
the LiDAR data only have one band of the same spatial
size. The six land-cover classes and 30 414 labeled pixels are
described in detail in Table III and Fig. 4.

3) MUUFL Gulfport Data Set: The third data set was
collected over the Gulf Park Campus of the University of
Southern Mississippi [65], [66]. The collected data set includes
HIS and LiDAR data. The original HSIs have 325 × 337
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TABLE II

LAND-COVER CLASSES IN THE HOUSTON DATA SET

TABLE III

LAND-COVER CLASSES IN THE TRENTO DATA SET

TABLE IV

LAND-COVER CLASSES IN THE MUUFL GULFPORT DATA SET

pixels with 72 bands. However, eight bands were removed
due to severe noise, leaving 64 bands for the experiment.
In addition, the scene contains a region of invalid data in the
lower-right corner of the image. Therefore, the original HSI
was cropped to 325 × 220 × 64 as the new data set. The
details are given in Table IV and Fig. 5.

B. Experimental Setup

In this article, we focus on addressing the small sample
size problem. Therefore, a limited number of labeled samples
(from 3 to 15) are selected from each class to form the
training set. The remaining samples are used to compose the
test set. Afterward, to evaluate the performance of different
methods, the OA and kappa coefficient (κ) are calculated.
More precisely, the OA is expressed as a percentage calculated
by dividing the number of corrected classified samples by the
sum of the test samples. κ is a measure of agreement and is

Fig. 5. Ground-truth map of the MUUFL Gulfport data set (11 land-cover
classes).

defined as

κ = OA − EA

1 − EA
(28)

where EA is the expected accuracy by random chance. The
greater the κ value is, the more accurate the classification
results.

To verify the effectiveness of the proposed method for
classification, a series of experimental tests are carried out.
Our proposed approach MFSuDF is compared with 11 state-
of-the-art methods.

1) RAW: The RF classifier is applied to the concatenated
HSIs and LiDAR data, i.e., J.

2) EMAP: The RF classifier is applied to the extended
morphological features of J [67].

3) GCK: Generalized composite kernel classifier is applied
on J [68].

4) ERS: The RF classifier is applied on J, and ERS is used
to regularize the map.

5) 3-D-CNN: 3-D convolutional neural network for HSIs
and LiDAR data [69].

6) EPCA: A novel ensemble classifier is applied on HSIs
and LiDAR data [70].

7) GGF: Generalized graph-based fusion of HSIs and
LiDAR data [31].

8) EPFF: Feature fusion using extinction profiles of HSIs
and LiDAR data [25].

9) KPCA-GaborM: The RF classifier is applied to the
Gabor magnitude features of KPCA-based HSIs and
LiDAR (i.e., M), which is just the classification
map CM.

10) KPCA-ERS: The RF classifier is applied to the concate-
nated KPCA-based HSIs and LiDAR (i.e., R), and ERS
is used to regularize the obtained map CR, which is just
the classification map Z4 in Fig. 1.

11) MFDF: The decision fusion strategy is applied on the
three pixelwise classification maps (CR, CM, and CP)
without superpixel regularization.

To reduce the effects of random factors, training samples are
selected randomly 20 times from each data set. Both the means
and standard deviations are calculated in the experiments.

C. Parameter Settings

In our proposed MFSuDF framework, most of the parame-
ters have been set by default. Concretely, the KPCA dimension
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Fig. 6. OA versus the number of pixels inside superpixel with a different number of training samples per class on the Houston data set (first row), the Trento
data set (second row), and the MUUFL Gulfport data set (third row). The number of training samples per class is 3 (first column), 5 (second column),
10 (third column), and 15 (last column).

can be decided by the 99% energy contained in the principal
components, while the scale and orientation parameters of
Gabor wavelets have been presented in (16) and (19).

In this section, let us focus on the last important parameter
that is not explicitly given: the number of superpixels in the
superpixel map. Since the size of each image is not consistent,
it is less meaningful to directly set the same number of
superpixels for all data sets. Conversely, some experiments
based on the number of pixels inside the superpixel have
been conducted, which has shown good performance [71].
At the same time, because our previous experiments are
not comparable for the superpixels, some other methods are
added for comparison to reinforce the claim of superiority and
robustness of MFSuDF.

1) SNIC: The RF classifier is applied on J, and SNIC is
used to regularize the map.

2) MFDFS: The decision fusion strategy is applied on the
three SNIC regularized maps (i.e., Z1, Z2, and Z3 shown
in Fig. 1).

3) MFDFE: The decision fusion strategy is applied on the
three ERS regularized maps (i.e., Z4, Z5, and Z6 shown
in Fig. 1).

Besides, the ERS method presented in the last subsection is
also included for comparison. The number of pixels inside the
superpixel ranges from 50 to 500. Fig. 6 shows that the OA
metric varies with the number of pixels inside superpixel on
the Houston data set, the Trento data set, and the Missouri
University and University of FLorida (MUUFL) Gulfport data
set, respectively. Here, four circumstances, i.e., 3, 5, 10, and
15 training samples per class, are concerned.

In Fig. 6, the OA of all compared methods generally
improves with the increase of training samples (from left to
right), and it can be clearly seen that MFSuDF, MFDFE , and
MFDFS are above the ERS and SNIC, which confirms that the
incorporation of Gabor texture information and KPCA-based
information can significantly promote the discrimination of
objects. Meanwhile, from left subfigures to right subfigures of
Fig. 6, which represents an increase in the number of train-
ing samples, it can be observed that the curve of MFDFE

and MFDFS becomes unstable, and even decreases a lot as
the size of superpixel increases. This is because the spatial
homogeneity of objects can be well described with a small
number of pixels inside superpixels. With the increase in
the number of pixels inside superpixels, the superpixel map
is more likely to be undersegmented, eventually deteriorat-
ing the classification performance. Alternatively, since our
MFSuDF approach not only includes the regularized maps
from both kinds of superpixel segmentation but also imports
the pixelwise classification maps of different features (i.e., CR,
CM, and CP), MFSuDF is always superior to the compared
methods, and the corresponding curve is kept stable with a
different number of pixels in superpixel, as shown in Fig. 6.
Thus, the robustness of our framework can be guaranteed,
and the number of pixels inside superpixel is simply set
to 100 by default in our following experiment for all data
sets. Correspondingly, the number of superpixel regions is
calculated by the spatial size of the scene (X × Y ) divided by
100, and Table V lists the number of superpixel regions using
ERS and SNIC for the three data sets (it is worth pointing out
that the number of superpixel regions of ERS and SNIC is not
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TABLE V

NUMBER OF SUPERPIXEL REGIONS USING ERS AND SNIC FOR THE
HOUSTON, TRENTO, AND MUUFL GULFPORT DATA SETS

Fig. 7. OA as functions of the number of labeled samples per class on
(a) (Left) Houston, (b) (Middle) Trento, and (c) (Right) MUUFL Gulfport
data sets.

the same due to different computational procedures of the two
segmentation methods).

In our experiments, since 99% energy contained in the
principal components of KPCA is kept, the dimensions of
KPCA BK are 18, 10, and 11, respectively, for the Houston,
Trento, and MUUFL Gulfport data sets. Alternatively, for the
RF classifier, the number of the decision tree is set as 500 by
default. Specifically, four 3-D Gabor wavelets are applied
on the KPCA-reduced HSIs data, and the dimensions of the
Gabor magnitude feature are 72, 40, and 44 for the three
data sets, respectively, (the same for the Gabor phase feature).
Meanwhile, 24 2-D Gabor filters are applied for LiDAR
data, and the dimensions of the achieved Gabor features are
24, 24, and 24 for the three data sets, respectively. Hence,
the concatenated feature dimensions are 96, 64, and 68 for the
three data sets, and the depth of the trees of the forest is 6, 6, 6,
which is computed based on the rule that the feature subspace
is the floor of the logarithmic value of feature dimension.
Similarly, for the raw data-based feature (concatenated KPCA-
reduced HSIs and LiDAR data), the feature dimension is 19,
11, 12 for the three data set, and the depth of the trees of the
forest is 4, 3, 3, respectively.

D. Experimental Results

In order to demonstrate the relevance of HSIs and LiDAR
data, the RF classifier is applied to the LiDAR and HSIs
data, which is, respectively, called RAWLiDAR and RAWHSI.
At the same time, the MFSuDF approach applied to the
HSIs data, denoted as MFSuDFHSI, is also concerned. Fig. 7
shows the OA of the five compared methods (RAWLiDAR,
RAWHSI, RAW, MFSuDFHSI, and MFSuDF) with a different
number of labeled samples per class on the three data sets.
Here, the number of labeled samples per class varies from
3 to 15. Each experiment is executed 20 times, and the
mean values and standard variation are reported. It can be
observed from Fig. 7 that the RAW and MFSuDF methods,
which consider both HSIs and LiDAR data, achieve better
performance than the rest three methods, including RAWHSI,
RAWLiDAR, and MFSuDFHSI, validating the indispensability

Fig. 8. Houston data set. (a) OA and (b) kappa as functions of the number
of labeled samples per class.

Fig. 9. Trento data set. (a) OA and (b) kappa as functions of the number of
labeled samples per class.

Fig. 10. MUUFL Gulfport data set. (a) OA and (b) kappa as functions of
the number of labeled samples per class.

of the LiDAR data. In fact, the HSIs data provide rich
discriminative spectral information for material identifica-
tion, while LiDAR data can contribute potential details for
HSIs, including the height and shape information of land-
cover objects, which is an important supplement for material
classification.

Figs. 8–10 show the OA and κ coefficient of the 12 com-
pared methods (i.e., RAW, EMAP, GCK, ERS, 3-D-CNN,
EPCA, GGF, EPFF, KPCA-GaborM, KPCA-ERS, MFDF, and
our MFSuDF) when varying the number of training samples
per class from 3 to 15. Generally, the classification results
are better with the increase in the training sizes for each data
set. First, the results of 3-D-CNN (on the Houston and Trento
data sets) and RAW without any feature extraction procedure
(on the MUUFL Gulfport data set) provide the lowest perfor-
mance in most cases, implying the instability of deep learning-
based method for small sample set issue. Meanwhile, it can
also be seen that the ERS method in the Houston data set
and EPCA in the other two data sets output the second-worst
results, which means that a single feature extraction method
can only show the characteristics of one aspect of an object.
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TABLE VI

CLASSIFICATION PERFORMANCE USING RAW, EMAP, GCK, ERS, 3-D-CNN, EPCA, GGF, EPFF, KPCA-GABORM, KPCA-ERS,
MFDF, AND MFSUDF FOR THE HOUSTON DATA SET WITH THREE LABELED SAMPLES PER CLASS AS TRAINING SET

Fig. 11. Houston data set: classification maps obtained by: (a) RAW, (b) EMAP, (c) GCK, (d) ERS, (e) 3-D-CNN, (f) EPCA, (g) GGF, (h) EPFF,
(i) KPCA-GaborM, (j) KPCA-ERS, (k) MFDF, and (l) MFSuDF when the number of training samples is three per class (the percentage in the brackets is the
corresponding accuracy).

If the discrimination ability of the feature is relatively low,
the classification accuracy will be greatly affected. Besides,
the accuracies of EPFF are higher than those of EMAP,
GCK, GGF, KPCA-GaborM, and KPCA-ERS, implying that a
simple spatial filter could have a strong discriminative ability
by reducing within-class spectral variations and intrinsic
noise.

As expected, the two Gabor feature-based decision fusion
methods—MFSuDF and MFDF—have demonstrated better
classification performance than the other methods in most
cases. This is reasonable since the information complementar-
ity from multiple modules is helpful for material classification,
which also validates the effectiveness of decision-level fusion
strategy with multiple kinds of features. Furthermore, by
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TABLE VII

CLASSIFICATION PERFORMANCE USING RAW, EMAP, GCK, ERS, 3-D-CNN, EPCA, GGF, EPFF, KPCA-GABORM, KPCA-ERS,
MFDF, AND MFSUDF FOR THE TRENTO DATA SET WITH THREE LABELED SAMPLES PER CLASS AS TRAINING SET

TABLE VIII

CLASSIFICATION PERFORMANCE USING RAW, EMAP, GCK, ERS, 3-D-CNN, EPCA, GGF, EPFF, KPCA-GABORM, KPCA-ERS,
MFDF, AND MFSUDF FOR THE MUUFL GULFPORT DATA SET WITH THREE LABELED SAMPLES PER CLASS AS TRAINING SET

comparing these two methods that perform decision fusion,
it is not difficult to find that the MFSuDF curve is always
above the MFDF curve, indicating the necessity of incorpo-
rating the superpixel regularization procedure.

Furthermore, when there are only three training samples
per class, the results of the 12 methods have significant
differences, which are summarized in Tables VI–VIII. Here,
the classification performance per class is evaluated by the pre-
cision, which is denoted as a percentage calculated by dividing
the number of corrected classified samples per class by the
number of test samples per class. In these tables, it can be seen
that, in most cases, the performance yielded by MFSuDF is
better than those yielded by the other methods in the three data
sets. Specifically, considering the C5 class (Vineyard) of the
Trento data set, it can be found from the ground truth map (see
Fig. 4) that the spatial distribution of C5 is very regular; thus,
the advantages of feature fusion and superpixel regularization
procedure in our MFSuDF method can be fully engaged, and
the performance increases from 57.20% of the RAW method to
95.01% of our approach, as shown in Table VII. Alternatively,
concerning the C10 class (Yellow Curbs) of the MUUFL Gulf-
port data set in Table VIII, the classification performances of
ERS (9.34%) and KPCA-ERS (12.05%) are much lower than
the others. In fact, since there are only 183 labeled samples
of C10, and they are scattered in the scene, it is even hard
to be seen in Fig. 5. Through integrating the three pixelwise
classification maps (i.e., CR, CM, and CP), the accuracy of
MFSuDF increases to 30.82%, indicating the necessity and
rationality of feature fusion strategy of the proposed method.
Of course, the performance of MFSuDF with C10 is still
lower than the nonsuperpixel-based methods, which needs

Fig. 12. Trento data set: classification maps obtained by (a) RAW,
(b) EMAP, (c) GCK, (d) ERS, (e) 3-D-CNN, (f) EPCA, (g) GGF, (h) EPFF,
(i) KPCA-GaborM, (j) KPCA-ERS, (k) MFDF, and (l) MFSuDF when the
number of training samples is three per class (the percentage in the brackets
is the corresponding accuracy).

further research to incorporate the spatial information more
elegant. To illustrate, the complete classification maps for
all data of the 12 methods are shown in Figs. 11–13.
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Fig. 13. MUUFL Gulfport data set: classification maps obtained by (a) RAW,
(b) EMAP, (c) GCK, (d) ERS, (e) 3-D-CNN, (f) EPCA, (g) GGF, (h) EPFF,
(i) KPCA-GaborM, (j) KPCA-ERS, (k) MFDF, and (l) MFSuDF when the
number of training samples is three per class (the percentage in the brackets
is the corresponding accuracy).

We can easily observe that MFSuDF has the best classification
effect.

VI. CONCLUSION

An MFSuDF approach for HSI and LiDAR data
classification has been proposed in this article. In detail, after
ERS-guided KPCA is applied to HSIs, the 2-D and 3-D
Gabor wavelets are employed to extract representative
spectral–spatial and elevation information from the

KPCA-reduced HSIs and LiDAR data, respectively. Then,
we utilize RF and QBC classifiers to obtain three classification
maps containing information from different aspects. Finally,
a superpixel-based decision fusion classification method
is adopted on all extracted maps (including pixelwise and
superpixel regularized) to obtain a final classification map.

In summary, the main contributions of this article are
proposing an ERS-guided KPCA, integrating 2-D and 3-D
Gabor features of multisource data, exploring the interac-
tion between multiple classification maps and two superpixel
segmentations, and designing a decision fusion framework
based on all extracted classification maps. Compared with
the RAW, EMAP, GCK, ERS, 3-D-CNN, EPCA, GGF, EPFF,
KPCA-GaborM, KPCA-ERS, and MFDF methods, the exper-
imental results consistently show that the fusion of HIS
and LiDAR data using our proposed MFSuDF method can
efficiently improve the classification accuracy. Superpixel-
based decision fusion exhibits excellent performance, which
proves that decision with different superpixel segmentations
is a remarkable tool for classification. As mentioned earlier,
the superpixel segmentation may have poor results due to the
scattering effects of land-cover classes, which should be paid
more attention and is the future direction in our work.
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