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Abstract—Haze in hyperspectral images (HSIs) can lead to
crosstalk between multiple bands, resulting in errors that can be
amplified and transmitted during data processing. As a conse-
quence, this may cause a reduction in the accuracy and precision
of remote sensing data. The purpose of haze removal is to
restore high-quality HSIs from degraded ones. The high spectral
resolution and typically dozens to hundreds of spectral bands in
HSIs pose significant challenges for haze removal. Thus, many
methods designed for natural and multispectral images are not
effective in removing haze in HSIs. To address this challenge, we
develop a model called asymmetric attention convolution network
(AACNet) designed for haze removal in HSIs. Specifically, the
basic architecture of AACNet is mainly composed of several
residual asymmetric attention groups (RAAGs), where the core
components are residual asymmetric attention blocks (RAABs).
This design enables the full utilization of deep spatial-spectral
features while skipping low-frequency regions and focusing more
on the haze-affected areas. To more accurately restore the
spectral information in areas polluted by haze, a pooling channel
self-attention (PCSA) module has been proposed. This module
can effectively reconstruct the spectral response curve that is
affected by the haze. Our experiments on both simulated and
real datasets demonstrate that the proposed AACNet outperforms
several leading haze removal methods in both precision and
visual quality. The source code and data of this article will be
made publicly available at https://github.com/SZU710/AACNet
for reproducible research.

Index Terms—hyperspectral images, haze removal, deep learn-
ing, attention mechanism.

I. INTRODUCTION

HYPERSPECTRAL sensors can image objects in con-
tinuous narrow wavelengths, producing spectral curves

that reflect the object’s physical properties. Due to the unique
spectral characteristics of ground objects, HSIs can accurately
detect, identify and analyze ground objects. HSIs are widely
used in Earth observation applications, such as resource ex-
ploration [1], [2], precision agriculture [3], [4], and disaster
monitoring [5]–[7]. Optical imaging is susceptible to scattering
and atmospheric particulate matter, resulting in blurry images,
reduced visibility, and low contrast, all of which significantly
degrade image fidelity. Haze, in particular, can destroy the
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spectral curve of surface objects and seriously affect the
accurate identification of HSIs, ultimately limiting its practical
applications. As a result, image dehazing is crucial for many
image-processing applications and holds significant practical
value.

Researchers have proposed various methods for restoring
clear images from hazy images, but these methods are typically
specific to natural images. In general, there are two categories
of image dehazing methods: prior-based and learning-based.
The most striking difference between these two types is that
the image priors in prior-based methods are manually crafted,
while learning-based methods automatically learn the priors.
Several typical image priors, such as dark channel prior [8],
color-line prior [9], and color attenuation prior [10] have been
proposed to calculate the transmission map for achieving clear
images. In addition, Berman et al. [11] discovered that image
dehazing can also be accomplished through a nonlocal haze-
line prior. Although these prior-based methods can produce
satisfactory results in some specific scenarios, the reliance on
prior assumptions may lead to inaccurate dehazing results. It
is worth noting that the atmospheric scattering model-based
RGB image dehazing methods [12], [13] are not suitable for
haze removal in HSIs. This is mainly because the atmospheric
scattering model assumes that the attenuation coefficient of all
spectral channels is constant, which does not hold for HSIs due
to the more extensive spectral information they possess.

In recent years, deep learning-based methods have demon-
strated significant advantages in computer vision and image
processing. With the expansion of image datasets, deep learn-
ing has become increasingly popular in the study of removing
haze from RGB images. Cai et al. [13] and Ren et al. [12]
utilized convolutional neural networks (CNNs) to estimate the
medium transmission map from the blurry input image, which
was then used to generate the corresponding haze-free image.
However, the inaccurate estimation of the transmission map
always resulted in a decrease in the quality of the dehazed
image. Therefore, subsequent researchers proposed a series of
dehazing methods that do not require the estimation of the
medium transmission map. Chen et al. [14] employed smooth
dilation convolution to avoid grid artifacts, and adopted a gat-
ing sub-network to fuse features from different levels, thereby
recovering clear haze-free images. With the development of
attention mechanisms in deep learning, researchers began to
use attention mechanisms to enhance the representation ability
of dehazing networks. Qin et al. [15] combined channel and
spatial attention mechanisms to selectively process different
channel and pixel weights, enabling the network to focus more
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on the contaminated areas. Song et al. [16] introduced gating
mechanisms into convolutional blocks to serve as pixel atten-
tion modules, thereby enhancing the dehazing performance of
the model.

In the field of remote sensing, a large number of mod-
els for multispectral image dehazing have been proposed.
These models can be mainly divided into two categories:
dehazing models based on traditional methods and dehazing
models based on deep learning. The traditional model-based
or prior-based methods rely on manually extracted features
from the hazy images and use various mathematical models
to estimate and remove the haze. Zhou et al. [17] utilized
radiative transfer model to remove thin clouds by calculating
the linear regression coefficient between visible or infrared
bands and cirrus band. Xie et al. [18] first determined the
hazy area through the image brightness, and then repaired
the image based on color consistency constraints and global
prior information. Xu et al. [19] developed a dehazing method
that employs a dehazing operator to gradually and iteratively
remove haze until satisfactory results are obtained, and updates
the transmission rate and scene brightness information of the
image through multiple iterations before reconstructing the
final clear image using the estimated transmission rate and
the hazy scene. Xu et al. [20] found that clouds have a
higher signal-to-noise ratio, and they removed thin clouds in
optical remote sensing images through noise-adjusted principal
component transformation. These methods have been widely
used and achieved some success in dehazing. However, they
have limitations in dealing with complex and diverse hazy
scenes, and low accuracy and robustness in the restoration of
remote sensing images due to their reliance on handcrafted
features and assumptions.

With the development of deep learning technology, re-
searchers have begun to use deep learning techniques to solve
the problem of multispectral image dehazing. CNNs with
residual structures were applied to increase the depth of the
model and improve its ability to extract haze features [21],
effectively enhancing the dehazing performance of the model.
Guo et al. [22] integrated local and global residual learning
into the network, and introduced a channel attention module
to capture strong channel correlations present in multispectral
images. Zi et al. [23] employed a neural network designed
based on the U-Net [24] architecture to estimate the thickness
coefficients of each band with respect to the reference haze
thickness map, thereby obtaining haze maps of different bands.
The approach proposed in [25] leverages haze distortion con-
trol functions and a multiscale grid architecture to intelligently
model and restore haze-free images while preserving the spa-
tial structures of ground objects. These techniques aim to al-
leviate the degradation caused by haze in multispectral remote
sensing images. Nevertheless, the straightforward application
of these techniques to haze removal in HSIs is a formidable
task, mainly due to the augmented spectral complexity inherent
in HSIs.

The haze present in remote sensing images is spatially
variant and its effect is related to the wavelength, with a
tendency to decrease as the wavelength increases [26]. This
phenomenon causes color distortion in the image and affects

the performance of traditional dehazing methods that are based
on hand-crafted features. The impact of haze in HSIs is
more complex than that in multispectral images. Different
bands are affected by haze to varying degrees, making it
more challenging to remove haze from all bands compared to
multispectral images. Furthermore, the bands in hyperspectral
images are highly correlated, which means that there is a
significant overlap of information between them, making it
easier to overfit the model. Moreover, HSIs typically contain
hundreds of bands, requiring more feature information to
reconstruct a clear HSI during the haze removal process than
in multispectral images. This necessitates the model to have
stronger spatial and spectral feature extraction capabilities to
achieve better haze removal results. Therefore, applying the
multispectral image haze removal method directly to HSIs may
lead to suboptimal results. To address these challenges, we
propose a new HSI haze removal method called Asymmetric
Attention Convolutional Network (AACNet). Our proposed
AACNet can extract comprehensive and complex spatial and
spectral features, capture the correlations between different
channels to prevent overfitting, and finely adjust the weights
of different channels, effectively reconstructing the spectral
response curves of the haze-contaminated regions. The three
main contributions of this work are described as follows:

1) The backbone network architecture of AACNet is mainly
composed of several residual asymmetric attention groups
(RRAG), with residual asymmetric attention blocks
(RAAB) being the core component of each RRAG. The
proposed RAAB adopts a multi-path connection to fully
utilize the deep spatial-spectral features and uses resid-
ual connections and attention mechanisms to skip low-
frequency regions and focus on high-frequency regions.

2) In RAAG, asymmetric attention convolution (AAConv)
is the most critical component, which consists of fusion
asymmetry convolution (FAConv) and global attention
(GA). During the training phase, the proposed FAConv
utilizes multi-path connections to fully exploit the deep
spatial-spectral features. In the deployment phase, by
employing the structural re-parameterization strategy,
FAConv can be precisely and losslessly converted to
a memory-friendly single-path convolution, which im-
proves the model’s running speed while ensuring the
same performance. GA enables AAConv to pay more
attention to the hazy regions of HSIs.

3) To more accurately restore the spectral information of
regions polluted by haze, a pooling channel self-attention
(PCSA) module is designed to capture the correlations
between different channels and finely adjust the weights
of different channels. The developed PCSA can effec-
tively reconstruct the spectral response curve affected by
pollution. The proposed method has been evaluated on
various simulated and real datasets, and the experimen-
tal results show that AACNet outperforms state-of-the-
art dehazing methods in terms of both qualitative and
quantitative evaluation metrics.

The rest of the paper is organized below. Section II intro-
duces related work on hyperspectral image dehazing, atten-
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tion mechanism, and structural re-parameterization. Section
III details the proposed approach. Section IV validates the
effectiveness of our approach on both simulated and real
datasets. Finally, Section V concludes the paper.

II. RELATED WORKS

A. Dehazing Models for HSIs

There is limited literature on dehazing for HSIs. Further-
more, the majority of these studies have relied on model-
driven approaches. In [27], the authors first calculated a haze
density map by differentiating the average bands belonging to
the visible and infrared spectral ranges. The haze intensity
map mainly reflects the spatial distribution of haze in the
hazy image. Then, the haze abundance and density in different
spectral bands were estimated based on the pixel reflectance
between two manually selected pixels with different haze
levels. Finally, the haze-free HSIs were obtained by subtracting
the product of the estimated haze abundance and density maps
from the original hazy target image. To automatically estimate
the concentration of haze, Li et al. [28] proposed a saliency
measure method that utilizes the reflectance differences be-
tween hazy and haze-free pixels. The RGB bands are extracted
from the original hyperspectral image and transformed into
the Intensity-Hue-Saturation (IHS) space. Then, the saliency
maps for haze-free and hazy pixels are computed. Ultimately,
the haze intensity map is integrated with the saliency maps to
estimate the reflectance of hazy and haze-free pixels.

Another work based on a spectral grouping network
(SGNet) was proposed by Ma et al. [29] by utilizing the useful
information of each spectral band. SGNet divided HSIs into
spectral subsets based on their correlation and performed par-
allel convolution with multiple branches for feature extraction.
To transfer useful information between adjacent branches, a
novel attention block was designed. Despite the effectiveness
of SGNet, its spectral grouping strategy may compromise the
continuity of spectral bands, leading to reduced accuracy in re-
constructing HSIs. To overcome these limitations, we propose
AACNet, a model that can be applied to haze removal from
HSIs with various numbers of bands without grouping, while
preserving the continuity of the spectra. AACNet consists
of multiple RRAGs, where RAAB is the core component
of each RRAG. The proposed RAAB utilizes a multi-path
connection to fully leverage deep spatial-spectral features,
and employs residual connections and attention mechanisms
to skip low-frequency regions and focus on high-frequency
regions. Moreover, AACNet can preserve the original features
of the HSI through skip connections.

B. Attention Mechanism

The attention mechanism has gained significant attention in
remote sensing image processing [30]–[33] due to its ability
to selectively emphasize informative features and suppress
irrelevant ones, inspired by human perceptual mechanisms.
Previous research has explored the effectiveness of attention
mechanisms in various remote sensing applications, such as
HSI denoising [34], change detection [35], image classification
[36], and band selection [37]. However, to the best of our

knowledge, attention mechanisms have not been applied to
the HSI dehazing problem. In this research paper, we present
the PCSA block, which aims to accurately reconstruct the
spectra of HSIs contaminated by haze. The PCSA block uses
a spatial pooling operation to obtain a channel descriptor,
assigns a weight to each channel, and calculates the self-
attention matrix of the channel descriptor to finely adjust the
weights of different channels and effectively reconstruct the
spectra contaminated by haze.

C. Structural Re-parameterization

Structural Re-parameterization is a technique that parame-
terizes a structure using parameters transformed from another
structure [38], [39]. Although this approach may result in
heavy parameters, large memory consumption, and slow run-
ning speed during model training, it can ensure the model has
strong representation capabilities. By using the structural re-
parameterization technique during deployment, the model can
inherit powerful representation capabilities and achieve a fast
running speed. Various such approaches have been proposed
to improve the performance of convolutional neural networks.
ExpandNets [40] expanded the traditional convolutional lay-
ers into three consecutive convolutional layers, preserving
the advantages of different sensory field size convolutions
to enhance model performance. Re-Parameterization visual
geometry group (ReVGG) network [41] added a multi-branch
topology to the VGG model, which effectively improved its
performance [42]. Asymmetric convolutional network (AC-
Net) [43] enhanced the robustness of traditional convolution
against rotational distortions using one-dimensional asymmet-
ric convolution. During deployment, ACNet is equivalent to a
traditional convolution. To enhance the capability of exploring
the deep spatial-spectral features of HSIs, we propose FAConv.
During the model training phase, FAConv utilizes a multi-
branch structure to aggregate features extracted from different
branches, effectively improving the model’s ability to extract
spatial and spectral features. In the deployment phase, FAConv
can be mathematically converted into a single 3×3 convolution
without compromising accuracy, leading to a faster runtime.

III. PROPOSED METHOD

A. Architecture of AACNet

Let X ∈ RH×W×C represent the hazy hyperspectral image
and Y ∈ RH×W×C represent the clear hyperspectral image.
Here, C is the number of channels, and H and W are the
height and width of the image, respectively. We assume that
X and Y satisfy the following relationship:

X = Yt + a(1− t) (1)

where a is the global atmospheric light and t is the haze
transmission diagram. Thus, a clear HSI can be obtained by
the following equation:

Y =
X − a

t
+ a (2)

In hyperspectral imaging, each pixel is represented by a
spectrum of intensities at different wavelengths, and the pres-
ence of haze in the atmosphere causes the spectral intensities to
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Fig. 1: The network architecture of the proposed asymmetric attention convolution network (AACNet). ⊕ denotes the element-
wise summation. ⊗ denotes the element-wise product.

be attenuated in a wavelength-dependent manner. The amount
of attenuation is determined by a and t, both of which are
unknown and need to be estimated to perform dehazing. Thus,
dehazing from hyperspectral images is an ill-posed problem.
To address this issue, we propose a deep learning model called
AACNet which is designed to learn deeper and more diverse
spatial and spectral information, enabling it to capture a wider
range of features compared to models that only focus on one
aspect. Furthermore, AACNet can finely adjust the weights
of different channels, which enhances its ability to efficiently
predict clear hyperspectral images from haze ones.

As shown in Fig. 1, AACNet uses a combination of jump
connections, convolutional layers, and attention mechanisms
to perform haze removal on hyperspectral images. The jump
connections are used to preserve the original features of
the hazy hyperspectral image, which can be important for
maintaining the overall structure and content of the image.
The 1× 1 convolutional layer is then used to perform shallow
feature extraction, which can help to identify more specific
features related to the presence of haze. The three RAAGs
and 3× 3 convolutional layers connected in series can help to
further extract features from the input image, with the RAAGs
allowing the model to selectively attend to different parts of
the input based on their relevance to the task. The proposed
PCSA, 1×1 convolutional layer, and 3×3 convolutional layer
are used to further extract and refine the features obtained
from the RAAGs. The resulting features are then added to
the shallow features obtained previously, allowing the model
to take into account both shallow and deeper features in the
image. Finally, the resulting features are added to the original
features of the hyperspectral image to obtain a clear image.

The RAAG in AACNet is composed of n RAABs, each of
which consists of local residual learning, asymmetric attention
convolution (AAConv), PRelu, and PCSA. The RAAB utilizes

local residual learning to bypass the hazy regions and preserve
the regions that are not contaminated by haze. PRelu activation
function can help to introduce non-linearity into the model and
improve its ability to capture complex relationships between
the input features. The combination of AAConv and PCSA
can fully explore the spatial and spectral features of the hazy
regions and help the model better understand the distribution
and characteristics of the haze in the image ultimately leading
to more effective haze removal for HSIs.

B. AAConv

As shown in Fig 2, during the training phase AAConv
consists of two parts: FAConv and GA. The input features
are both fed into FAConv and GA, and the final output
features are obtained by cross-multiplying them. In FAConv,
we parallelized 3 × 3 convolution, 1 × 3 convolution, 3 × 1
convolution, and 1×1 convolution. This parallel design archi-
tecture allows FAConv to learn deeper and more diverse spatial
and spectral information compared to ordinary convolutions.
When a network has multiple parallel branches, each branch
increases the memory consumption of the network, and this
may increase the model’s running time and deployment costs.
Fortunately, using structural re-parameterization techniques,
a complex multi-branch network can be transformed into a
simple single-branch network without loss during the model
deployment phase. Fig. 3 illustrates how the deployment phase
FAConv converts the multi-branch training phase FAConv in
Fig. 2 into an equivalent single-branch 3 × 3 convolution
process. Once the training phase FAConv in Fig. 2 is trained,
the parameters of each convolution are determined. Then, in
the structural re-parameterization process shown in Fig. 3, the
parameters of 3 × 3 convolution, 1 × 3 convolution, 3 × 1
convolution, and 1 × 1 convolution are added together and
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assigned to the 3 × 3 convolution, resulting in a new 3 × 3
convolution that incorporates the rich spatial and spectral con-
textual information extracted by the training phase FAConv.
This 3 × 3 convolution, which fuses the parameters of four
parallel convolutions, inherits the superior performance of the
training phase FAConv. Below we will provide a detailed
explanation of how to convert the multi-branch FAConv into
a 3× 3 convolution during model deployment.
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The d-th convolutional kernel is denoted as K(d) ∈
RK×K×C ( d = 1, 2, ..., D) , where D represents the number
of convolutional kernels, K represents the size of convolution

kernel. The process of the 3 × 3 convolutional layer can be
represented as:

O:,:,d =

C∑
c=1

F:,:,c ∗ K(d)
:,:,c (3)

where ∗ represents the two-dimensional convolution operation,
c and d are the indices of C and D, respectively, and O:,:,d rep-
resents the feature map output by the d-th convolution kernel
K

(d)
:,:,c convolved with the intermediate feature map F:,:,c. For

simplicity, we have omitted the bias term in the formula. The
d-th convolutional kernel of the 1×3 convolutional layer in the
model is denoted as Kv(d) ∈ R1×3×C , the d-th convolutional
kernel of the 3×1 convolution is denoted as Kh(d) ∈ R3×1×C ,
and the d-th convolutional kernel of the 1 × 1 convolution
is denoted as Kp(d) ∈ R1×1×C . The entire convolutional
process of these three types of convolutions can be respectively
represented as:

Ov
:,:,d =

C∑
c=1

F:,:,c ∗ Kv(d)
:,:,c (4)

Oh
:,:,d =

C∑
c=1

F:,:,c ∗ Kh(d)
:,:,c (5)

Op
:,:,d =

C∑
c=1

F:,:,c ∗ Kp(d)
:,:,c (6)

where Ov
:,:,d, Oh

:,:,d, and Op
:,:,d represent the output feature

maps obtained by performing two-dimensional convolution op-
erations between Kv(d), Kh(d), Kp(d) and F:,:,c. As exhibited
in Fig. 3, a deployment phase FAConv can be replaced by an
equivalent 3× 3 convolution:

O
′

:,:,d = O:,:,d + Ov
:,:,d + Oh

:,:,d + Op
:,:,d (7)

K
′(d)
:,:,c = K(d)

:,:,c +Kv(d)
:,:,c +Kh(d)

:,:,c +Kp(d)
:,:,c (8)

O
′

:,:,d =

C∑
c=1

F:,:,c ∗ K
′(d)
:,:,c (9)

where K
′(d)
:,:,c is the d-th 3 × 3 convolution kernel obtained

after equivalent transformation and O
′

:,:d is the feature map
output by performing a two-dimensional convolution operation
between K

′(d)
:,:,c and F:,:,c.

The multi-branch convolutional structure can use different
convolutional kernels to extract different spatial and spectral
features from the input data, thereby enhancing the network’s
representational power. Each branch is then added and merged
to generate more comprehensive and complex spatial and
spectral feature representations. After converting all FAConv
modules during deployment, the equivalently converted 3× 3
convolution captures the same rich spatial and spectral con-
textual information as the multi-branch structure used during
training. Additionally, the converted convolution maintains the
same level of efficiency as the standard 3 × 3 convolution
during deployment.

In order to make AAConv pay more attention to the pixels
in hyperspectral images that are affected by haze pollution
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TABLE I: Quantitative results of different methods on the simulated validation and test dataset. The best results are highlighted
in bold.

Models Params(M) Flops(G)
Validation Test

RMSE (↓) UQI (↑) SAM (↓) SSIM (↑) RMSE (↓) UQI (↑) SAM (↓) SSIM (↑)
MSCNN 0.13 8.24 0.0379 0.6718 11.04 0.9108 0.0361 0.6911 10.27 0.9172
GCANet 0.79 24.58 0.0308 0.7984 4.62 0.9680 0.0287 0.8084 4.38 0.9656
SGNet 0.46 52.3 0.0149 0.9490 1.78 0.9802 0.0152 0.9425 2.02 0.9797

AODNet 4.36 286.15 0.0131 0.9421 2.02 0 9885 0.0115 0.9464 1.94 0.9892
PFDN 11.44 1.57 0.0106 0.9640 1.73 0.9824 0.0105 0.9614 1.77 0.9822
MIAN 200.94 109.25 0.0101 0.9499 1.77 0.9900 0.0095 0.9459 1.78 0.9903

AIDTransformer 10.90 203.23 0.0083 0.9627 1.58 0.9911 0.0088 0.9672 1.57 0.9911
GUNet S 2.67 14.11 0.0035 0.9942 0.61 0.9983 0.0042 0.9944 0.65 0.9978

Ours 1.82 110.43 0.0029 0.9952 0.56 0.9986 0.0033 0.9944 0.61 0.9982

without increasing the model’s computational load and the
number of parameters, we designed a simple GA structure
consisting of two 1 × 1 convolutional layers, Relu activation
function, and Sigmoid activation function in series. Although
GA does not significantly increase the model’s computational
load, it can significantly improve its performance. AAConv,
as the main component, gradually extracts advanced spatial
patterns and spectral features, while adaptively adjusting the
weights of each pixel to focus more on the areas affected by
haze.

C. PCSA

In order to improve the accuracy of restoring spectral infor-
mation in regions affected by haze, we developed the PCSA
module as shown in Fig. 1. The module is proposed to self-
learn the correlations between different channels and finely
adjust the weights of each channel. Two-dimensional average
pooling is designed to transform the global spatial information
into the channel descriptor, which can be represented as:

pc =
1

H ×W

H∑
i

W∑
j

Fi,j,c
p (10)

where Fi,j,c
p represents the value of the c-th channel of feature

Fp at coordinate (i, j), pc represents the channel descriptor.
Two-dimensional average pooling reduces the size of the input
feature map from H ×W × c to 1× 1× c.

To finely adjust the weights of each channel, a linear
transformation is applied to the pooled feature map, followed
by computing the self-attention matrix for channel vectors.
The process of computing the self-attention matrix A can be
represented as follows:

Q = Wqpc, K = Wkpc, A = KT ×Q (11)

where Q and K represent the vectors obtained after linear
transformations Wq and Wk.

After performing one-dimensional average pooling on A to
obtain a vector, it is input into a one-dimensional convolution
and passed through a Sigmoid activation function to obtain
the finely-tuned channel weights. Finally, the channel weights
are multiplied with the corresponding elements of the input

features to obtain the final output of PCSA. The process of
one-dimensional pooling can be represented as follows:

F∗
p = (σ(1DConv(vc)))× Fp (12)

where vc represents the vector obtained after one-dimensional
pooling, σ is the Sigmoid function, 1DConv is one-
dimensional convolution and F∗

p is the final output of PCSA.

IV. EXPERIMENTS

A. Datasets

In this study, we evaluate the performance of our proposed
method using both simulated and real datasets. Specifically,
we leverage Chinese Gaofen-5 satellite data to construct a
baseline simulated haze hyperspectral dataset. Additionally, we
generate a real haze hyperspectral dataset by utilizing the Earth
Observing-1 (EO-1) satellite data obtained from the United
States Geological Survey (USGS). Detailed descriptions of
these datasets are provided below.

1) Simulated Dataset: To quantitatively evaluate the dehaz-
ing performance, a simulated haze dataset is required due to
the unavailable ground truth data after haze removal under
realistic conditions. We use the cloud simulation method in
[44] to generate the simulated hazy hyperspectral images.
First, we randomly selected the cirrus band from a Landsat-8
image as the haze intensity map. Next, the spectral vector
of real haze from a high-resolution Gaofen-5 image was
extracted. Then, we multiplied the haze intensity map with the
spectral vector of haze to obtain a pure haze image. Finally,
we added the pure haze image to the haze-free hyperspectral
image to obtain the haze-contaminated hyperspectral image.
During the fusion process, we used a small coefficient to adjust
the thickness of the haze. Finally, a total of 210 clear Gaofen-
5 images with a size of 256 × 256 × 150 were employed as
the ground truth. The corresponding simulated hazy images
were produced by overlaying a haze patch from the hazy
hyperspectral image, in which 170 were used for training, 20
each were set aside for validation and testing purposes. Please
refer to [44] for more details of the simulation process.

2) Real Dataset: In order to implement AACNet on the
real remote sensing data, we built a dataset utilizing EO-1
Hyperion images, which have 242 continuous spectral bands
with wavelengths from 0.35 µm to 2.58 µm and a spatial
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Fig. 4: Haze removal results of six scenes obtained by different methods. The first and second rows are the images contaminated
by haze and their corresponding clear images. The third to eleventh rows show true-color composite images of Band 20 (472
nm), Band 35 (536 nm), and Band 65 (664 nm) of the HSI after dehazing.
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Fig. 5: The absolute error curve of the spectral response corresponds to the six scenes in Fig. 4. The absolute error curve
of the spectral response is obtained by calculating the absolute error of the average spectral reflectance of hazy areas with a
spatial size of 5× 5 pixels.

resolution of 30 m. We collected 43 pairs of hazy and clear
hyperspectral images, where the clear images were chosen
at the same location as the corresponding hazy image, but
captured on the nearest dates. Out of the 43 pairs, 37 pairs were
used as the training samples and 6 pairs were test samples.
Each hyperspectral image in the dataset was cropped to a size
of 256 × 256 × 242. Both the simulated dataset and the real
dataset include various land cover types, such as farmland,
rivers, mountains, cities, plains, and lakes, among others. This
ensures sufficient heterogeneity in the dataset, allowing us
to evaluate the generalization performance of our proposed
model.

B. Implementation Settings

The paired hazy and clear HSIs in simulated and real
datasets are all cropped to a spatial size of 64×64 for training
and testing. The training batch size is set as 32. The proposed
AACNet model is optimized using the ADAM [45] optimizer,
where beta1 = 0.9, beta2 = 0.99 and epsilon = 10−8. The
initial learning rate is set to 0.0002, and the training stops after
50 epochs. We found experimentally that the model works
best when the number of RAABs is 5, so we set n = 5. All
experiments are completed on the PyTorch framework via an
NVIDIA A40 and Intel(R) Xeon(R) Silver 4314 CPU. In this
paper, we optimize the network by adopting the mean squared
error (MSE) as the loss function to measure hazy and clear
HSIs.

C. Competing Methods

To evaluate the effectiveness of the proposed dehazing
method, we compared it against several state-of-the-art de-
hazing methods in both computer vision and remote sensing
domains, including multi-scale convolutional neural networks
(MSCNN) [12], gated context aggregation network (GCANet)
[14], spectral grouping network (SGNet) [29], all-in-one net-
work (AODNet) [46], physics-based feature dehazing net-
works (PFDN) [47], multi-input attention network (MIAN)
[48], aerial image dehazing Transformer (AIDTransformer)
[49] and a variant network of U-Net [24] for dehazing
(GUNET S) [16]. These dehazing methods were selected as
our competitors based on their high citation count. All param-
eters were set according to the author’s recommendations in
their papers. MSCNN, GCANet, and AODNet are three classic
CNN-based dehazing networks for natural images. SGNet
divides each HSI into multiple spectral subsets and inputs
them to parallel branch convolutions for feature extraction to
obtain the dehazed HSI. PFDN employs an encoder-decoder
architecture with residual learning and incorporates a physical
model unit that simulates the haze formation process to
dehaze natural images. MIAN is a multi-input convolutional
neural network based on the encoder-decoder architecture
designed for multispectral remote sensing image dehazing.
AIDTransformer is an aerial image dehazing network based on
the vision Transformer [50] architecture. GUNET S replaces
the convolution blocks in U-Net with residual blocks and
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introduces attention mechanisms to improve the network’s
representation capability, and is a recent dehazing network
designed for natural images.

D. Experiments on the Simulated Dataset

1) Evaluative Metrics: Four widely used evaluation met-
rics, including root mean square error (RMSE), universal
quality index (UQI) [51], spectral angle mapper (SAM) [52]
and structural similarity index measure (SSIM) [53] were
adopted:

RMSE =

√√√√ 1

n

n∑
i=1

(Hi − Ĥi)2 (13)

UQI =
4σxyµxµy

(σ2
x + σ2

y)(µ
2
x + µ2

y)
(14)

SAM = cos−1

(
t · p
|t||p|

)
(15)

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(16)

where n is the number of pixels in the image, Hi is the true
value for pixel i, Ĥi is the predicted value for pixel i. σxy

is the covariance between the two images, σ2
x and σ2

y are the
variances of the two images, and µx and µy are the means
of the two images. In SAM computation, cos−1 is the inverse
cosine function, t is the spectral signature of the true spectrum,
p is the spectral signature of the predicted spectrum. In SSIM
computation, c1 and c2 are constants to avoid instability when
the denominator is close to zero.

RMSE reflects the average absolute error between the
reconstructed image and the ground truth image, with lower
values indicating better reconstruction quality. UQI measures
the similarity in terms of luminance, contrast, and structure.
As the UQI value increases, the image quality is expected to
improve accordingly. SAM measures the spectral similarity.
A lower SAM value indicates a higher spectral similarity
between the reconstructed image and the ground truth image.
SSIM calculates the structural similarities, with higher values
indicating better reconstruction quality. It is worth noting that
all metrics were computed by taking an average over all
channels.

2) Quantitative Results: Table I shows the quantitative
results of all comparison methods on the simulated validation
and test dataset. The results presented in Table I indicate
that our method consistently achieves superior performance
over all other dehazing methods in the validation dataset
across all metrics. In the test dataset, our method demonstrates
comparable performance to GUNET S in terms of the UQI
metric, while outperforming other dehazing methods in other
metrics. Compared to the representative MSCNN method,
AACNet reduces RMSE from 0.0379 to 0.0029, increases
UQI from 0.6718 to 0.9952, decreases SAM from 11.4 to
0.56, and increases SSIM from 0.9108 to 0.9986 on the
validation dataset. Similarly, on the test dataset, AACNet
reduces RMSE from 0.0361 to 0.0033, increases UQI from

0.6911 to 0.9944, decreases SAM from 10.27 to 0.61, and
increases SSIM from 0.9172 to 0.9982. Compared to the
latest GUNET S method, AACNet reduces RMSE by 0.0006,
increases UQI by 0.001, decreases SAM by 0.05, and increases
SSIM by 0.0003 on the validation dataset. On the test dataset,
AACNet reduces RMSE by 0.0009, decreases SAM by 0.004,
and increases SSIM by 0.0004. The parameters of AACNet
decreased by 0.85M and 9.08M compared to GUNet S and
AIDTransformer, respectively. The floating-point operands of
AACNet decreased by 92.8G compared to AIDTransformer.
Overall, our proposed AACNet achieves a balance between
dehazing performance and model complexity.

3) Qualitative Results: For visual evaluation, we randomly
selected six different scenes with varying levels of complexity
from the validation and test datasets, such as mountains, lakes,
urban, and farmlands. To investigate the visual results of
different methods, we selected Band 20 (472 nm), Band 35
(536 nm), and Band 65 (664 nm) from the HSI to composite
a true-color image as shown in Fig. 4. It can be seen that
MSCNN and GCANet can reduce the thickness of haze in
hazy regions, but a significant amount of haze was still
retained in the image. In scene 2, SGNet, AIDTrasformer
and GUNet S showed obvious color distortion, and AODNet
had haze remaining in the removed image. In scenes 3 and
4, SGNet, PFDN and MIAN exhibited color distortion, and
AODNet had a small amount of haze remaining. In scene
5, SGNet, AODNet, PFDN, MIAN and AIDTrasformer all
show obvious color distortion. In scene 6, SGNet, AODNet,
and PFDN showed brighter colors and were not as clear as
the reference image in the marked area (highlighted by a red
box). Overall, the haze-free images recovered by our proposed
AACNet method had the best visual results and were closest
to the reference image.

To further compare the spectral reconstruction performance
of different methods, we calculated the absolute error between
the average spectral reflectance of regions with a spatial size
of 5×5 pixels in different HSIs and the spectral reflectance of
the corresponding regions in the reference HSI (Fig. 5). Our
analysis showed that the spectral response curves restored by
MSCNN and GCANet differed significantly from the curves
of the reference HSI, indicating poor spectral reconstruction
performance. The spectral response curves restored by SGNet,
AODNet, PFDN, MIAN, AIDTrasformer and GUNET S were
relatively close to the curves of the reference HSI, but the
spectral reconstruction performance was poor in bands with
high spectral reflectance. In contrast, our proposed AACNet
method restored a spectral response curve that was closer to
the curve of the reference HSI, indicating superior spectral
reconstruction performance and the ability to effectively re-
construct spectra contaminated by haze pollution.

Fig. 6 shows the absolute error heatmaps of six scenes
recovered by different methods to the corresponding ground
truth image. The images reconstructed by MSCNN and
GCANet methods have significant errors in all scenes, while
the HSI reconstructed by SGNet has large errors in scenes
1-5. The HSI reconstructed by PFDN and MIAN has no-
ticeable errors in scenes 2 and 3. The HSI reconstructed
by AIDTransformer has noticeable errors in scenes 2-6. The
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Fig. 6: The average absolute error heatmaps between the restored HSIs using nine different dehazing methods and the
corresponding ground truth HSIs.
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TABLE II: The ablation results on the Gaofen-5 test set.

Description GA FAConv PCSA RMSE SSIM

Backbone ✗ ✗ ✗ 0.0059 0.9974

Ea ✓ ✗ ✗ 0.0058 0.9975

Eb ✓ ✓ ✗ 0.0051 0.9976

Ec ✓ ✗ ✓ 0.0045 0.9977

Ed ✓ ✓ ✓ 0.0033 0.9982

HSI reconstructed by GUNet S has much larger errors in
scene 2 compared to the image reconstructed by our proposed
AACNet. Obviously, our analysis demonstrated that the haze-
free HSIs reconstructed by AACNet had the smallest error
compared to the ground truth image Additionally, our proposed
AACNet outperforms other methods in terms of dehazing
performance. Overall, the reconstruction results of all methods
in Scene 2, as indicated by the heatmaps, are the worst
compared with other scenes. This is primarily due to the
presence of diverse land types such as trees, farmland, and
rivers in Scene 2. Additionally, the texture information in
Scene 2 images is complex. These two challenges make the
reconstruction even more difficult. However, our model still
achieves the best result among all methods in Scene 2.

4) Ablation Analysis: In this section, we demonstrate the
impact of AAConv and PCSA on our proposed network
through ablation studies on the simulated dataset. The ex-
perimental results on the test dataset are shown in Table II,
where ”Backbone” refers to the baseline network with a 3×3
convolution replacing AAConv and PCSA. We recorded the
best RMSE and SSIM values. AAConv: We investigate the
impact of the two sub-modules of AAConv, FAConv and
GA, on the performance of the backbone model. Table II
presents the evaluation metrics on the test dataset, where
the values of RMSE and SSIM for the backbone network
are 0.59 and 0.9974, respectively. We introduce Ea, which
represents the model with GA merging into the backbone
network, to unequally process different features and pixels,
making the backbone network more attentive to the hazy areas
and outperforming the baseline. Building on the results of
Ea, we further conduct another experiment Eb to examine the
impact of FAConv in our proposed model. Compared to the
specific network Ea without FAConv, Eb achieves a decrease
of 0.0007 in RMSE and an increase of 0.0001 in SSIM. Our
experiments demonstrate that the AAConv composed of GA
and FAConv achieves superior performance.

PCSA: Embedding PCSA into Ea and Eb respectively
resulted in Ec and Ed. Compared to Ea, Ec exhibits a decrease
of 0.0013 in RMSE and an increase of 0.0002 in SSIM.
Similarly, Ed outperforms Eb by achieving a decrease of
0.0018 in RMSE and an increase of 0.0006 in SSIM. These
results demonstrate that PCSA contributes to the spectral
reconstruction of the hazy area and improves the accuracy of
the restored spectra.

E. Experiments on the Real Dataset

The evaluation of haze removal methods on real HSIs is
crucial, but obtaining real ground truth images is challenging,
and therefore, visual comparison is generally employed. In
Fig. 7, we present the results of seven dehazing methods
applied to six different real HSI scenes. The visual results
reveal that MSCNN performs similarly to its performance
on the simulated dataset, and it is ineffective in removing
haze in real HSIs. On the other hand, using GCANet for
dehazing may result in blurry HSIs with residual haze. SGNet
effectively removes haze from most scenes, but a small amount
of haze remains in scene 10, and severe color distortion is
observed in scenes 7 and 12. AODNet exhibits severe color
distortion in scene 8, and there is still haze in scenes 9 and 12.
PFDN exhibits severe color distortion in scenes 8, 10, and 12.
MIAN exhibits color distortion in scenes 7, 10, and 12, and
noticeable noise in scenes 8 and 9. AIDTransformer suffers
from severe color distortion in scenes 7 and 10. GUNet S
effectively removes haze in most scenes, but a small amount of
haze remains in scenes 8 and 9. In summary, the visual results
demonstrate that the comparison methods suffer from issues
such as blurring, residual haze, and severe color distortion,
making them unsuitable for practical applications.

In contrast, our proposed AACNet effectively removes haze
and reconstructs objects contaminated by haze. Compared to
other state-of-the-art methods, AACNet can reconstruct the
HSI with colors closer to the clear image without causing
blurring or residual haze. It can be seen from the simulated
and real experimental results, AACNet showed better dehazing
results on the crop and mountainous areas, which is mainly
because of the simple texture structure in these areas. These
results demonstrate that AACNet is an effective method for
haze removal in real HSIs, and it can be used to significantly
improve the quality of HSIs, especially in scenarios with
challenging atmospheric conditions.

It is important to note that while the proposed method
delivers promising results in terms of haze removal, it does
exhibit slight color distortion in the restored HSIs due to
the suboptimal quality of some training data. Moreover, the
varying time periods between the hazy and clear images
may result in changes in ground objects, causing inconsistent
ground objects in the image pairs. This highlights the need
for high-quality datasets to improve haze removal results.
The presence of complex atmospheric conditions such as
multi-layered haze and non-uniform haze distribution can also
affect the performance of haze removal algorithms. There are
other challenges associated with the practical application of
haze removal algorithms in real-world scenarios. Nonetheless,
the proposed method demonstrates outstanding performance
in removing haze from real datasets, effectively restoring
the obscured ground objects, and significantly improving the
overall quality of HSIs.
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Fig. 7: Haze removal results obtained by different methods on six EO-1 Hyperion image scenes. The first row is the image
contaminated by real haze. The second row is the clear reference image collected on the adjacent date. The third to eleventh
rows show the false-color composite images after dehazing by nine methods.
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V. CONCLUSION

Compared to haze removal in computer vision or multi-
spectral remote sensing fields, haze removal in hyperspectral
images presents a greater challenge. Despite this, the number
of studies on haze removal in HSIs is limited. To address this
gap, this paper proposes the AACNet model, which is tailored
specifically for HSI haze removal. The model’s backbone
structure is composed of multiple RAAGs, each containing
multiple RAABs, which effectively exploit the spatial and
spectral correlations between clear and polluted HSIs affected
by haze. During deployment, the trained AACNet can suc-
cessfully convert all the multi-branch FAConvs to a 3 × 3
convolution while maintaining the powerful feature extraction
ability of FAConv. Furthermore, to further improve the haze
removal performance of AACNet, we developed a PCSA
block to capture the spectral correlations between different
spectra of the intermediate features. This block adaptively
enhances important spectral features while suppressing redun-
dant features, improving the spectral reconstruction quality
of hazy regions. The effectiveness of AACNet for haze re-
moval was validated on both simulated and real hyperspectral
datasets, demonstrating superior performance compared to
other advanced haze removal methods. Our work highlights
the importance of addressing the unique challenges of haze
removal in hyperspectral images and provides a promising
solution for future research in this area. Overall, the proposed
AACNet model showcases the potential for further advance-
ments in haze removal for HSIs. Of course, our work has
some limitations. First, the proposed method requires a large
amount of Graphics Processing Unit (GPU) memory during
training due to the use of multi-branch convolution to improve
performance and a large amount of data in a single HSI.
Second, the quality of training samples can significantly affect
the results, which poses a challenge in creating high-quality
hyperspectral training data. Third, various noises in HSIs may
also affect the haze removal results.
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