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Abstract— Using single-source remote sensing (RS) data for
classification of ground objects has certain limitations; however,
multimodal RS data contain different types of features, such
as spectral features and spatial features of hyperspectral image
(HSI) and elevation information of light detection and ranging
(LiDAR) data, which can be used to extract and fuse high-quality
features to improve the classification accuracy. Nevertheless, the
existing fusion techniques are mostly limited by the number
of labeled samples due to the difficulty of label collection in
the multimodal RS data. In this article, a fusion method of
collaborative contrastive learning (CCL) is proposed to tackle
the abovementioned issues for HSI and LiDAR data classification.
The proposed CCL approach includes two stages of pretraining
(CCL-PT) and fine-tuning (CCL-FT). In the CCL-PT stage,
a collaborative strategy is introduced into contrastive learning
(CL), which can extract features from HSI and LiDAR data
separately and achieve the coordinated feature representation
and matching between the two-modal RS data without labeled
samples. In the CCL-FT stage, a multilevel fusion network is
designed to optimize and fuse the unsupervised collaborative
features, which are extracted in the CCL-PT stage for the
classification tasks. Experimental results on three real-world
datasets show that the developed CCL approach can perform
excellently on the small sample classification tasks, and CL is
feasible for the fusion of multimodal RS data.

Index Terms— Contrastive learning (CL), hyperspectral image
(HSI), light detection and ranging (LiDAR).

NOMENCLATURE

Symbol Meaning

Xh, Xl HSI and LiDAR data.

H, W, B Height, width, and channels of the HSI or
LiDAR data.

Xp, X| Patch cubes for HSI and patches for LiDAR
data.

P Neighborhood size.

fns f1, for Encoders for HSI, LiDAR data, and multilevel
fusion.
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g Projector.

h Predictor.

N Number of stacked residual blocks.

Pu P Output vector of hyperspectral and LiDAR
data through h.

Zns 21 Output vector of hyperspectral and LiDAR
data through g.

stopgrad Branches of the network without gradient
back-propagation.

Cy, C Output constants for stopgrad(z;) and
stopgrad(z;).

q Convolution blocks.

a,, a; Features of different depths from
hyperspectral and LiDAR data.

ap Concatenated features of a;, and a;.

my; Features of different depths extracted by the
fusion network.

rp Output vector through g.

0 Parameters of convolution layer.

3,y Predicted values and ground truth for pixels.

I. INTRODUCTION

HE hyperspectral image (HSI) acquired by combining

imaging technology and spectral technology contains rich
features both in the spatial and spectral aspects [1], which have
unique advantages in ground object recognition [2]. HSI has
a higher spectral resolution than other remote sensing (RS)
data and has been widely used for classification of ground
objects. In the previous studies, researchers have proposed a
large number of classification approaches for HSI [3], which
are mainly based on the spectral features of pixels [4], [5],
the neighborhood features of space [6], and the joint features
of spectral and spatial features [7], [8], [9], [10]. However,
there are some disadvantages if HSIs are only adopted for
classification. On the one hand, the process of HSI acquisition
is easily affected by factors, such as the atmosphere, which can
result in the phenomenon of the same objects with different
spectral response curves and the different objects with similar
spectral response curves. On the other hand, the mixed pixels
in HSI with the relatively low spatial resolution may make
it difficult to achieve the goal of fine-grained classification.
In order to overcome these shortcomings, several researchers
try to take advantage of multimodal RS data to improve
the HSI classification accuracy [11], [12]. In particular, light
detection and ranging (LiDAR) data, as a common RS data,
can provide high-precision digital elevation models [13] and
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elevation information, which can provide useful features as
complementary information for HSI to satisfy the different
application requirements, such as complex area classifica-
tion [14] and vegetation coverage analysis [15]. Also, the
LiDAR data are not affected by the cloud, so that it can offer
supplementary information to compensate for the details of
cloudy areas in HSI.

The fusion of HST and LiDAR data has received much atten-
tion. In general, the fusion techniques of the two-modal RS
data can be divided into three levels according to the different
image information processing methods, which are pixel-level
fusion, feature-level fusion, and decision-level fusion [16].
Also, there are some studies combining the abovementioned
fusion techniques for HSI and LiDAR data [17], [18], [19].
Pixel-level fusion is performed directly on raw HSI and
LiDAR data. Feature-level fusion is to fuse the feature infor-
mation, which is extracted from raw RS data. Decision-
level fusion is a fusion process based on decision rules
after a series of image processing, such as feature extraction,
feature recognition, and decision classification. In particular,
due to the obvious heterogeneity of HSI and LiDAR data,
feature-level fusion is more common in the existing research
works [20].

Pedergnana et al. [21] proposed a fusion method by super-
imposing features of raw spectral information and morpholog-
ically extended attribute profiles (EAPs) from HSI and LiDAR
data. The way of directly stacking features has the problem
of high feature dimension, and the “Hughes phenomenon”
can be prone to occur in the training process [22]. Therefore,
researchers have proposed different approaches to reduce the
feature dimension for HSI and LiDAR data fusion [23],
[24], [25]. Ghamisi et al. [26] performed principal component
analysis (PCA) on HSI before fusion to extract the top n
principal components. Total variational component analysis
(TVCA) is used to map features from a high-dimensional
space to a low-dimensional space for the fusion and classi-
fication [27]. Similarly, Rasti et al. [28] proposed a sparse
low-rank component analysis (SLRCA) method to fuse the
extracted features. Although the above studies reduce the
redundancy of spectral information of HSI, there is the pos-
sibility of losing some effective information for classifica-
tion [29]. Moreover, these methods depend on the handcrafted
features, and the deep features are excavated insufficiently,
which may not well fit the complex nonlinear relationship of
ground object features in HSI and LiDAR data [30].

Deep learning (DL) methods, to some extent, can make
up for the shortcomings of traditional fusion methods, which
can automatically extract features and learn rich semantic
information from multimodal RS data. Currently, scholars have
carried out many DL-based studies on the fusion of HSI
and LiDAR data for the purpose of classification. The DL-
based methods can be roughly divided into two branches,
including the supervised classification and the unsupervised
classification. The supervised classification refers to the use
of the feature prior knowledge obtained from a large number
of labeled samples to fuse and classify for specific tasks, which
is susceptible to human subjective factors and time-consuming
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for sample labeling. In contrast, the unsupervised classification
provides some advantages for HSI and LiDAR data, since
it does not require labeled samples for model training and
learning the potential features from the given data.

Several supervised classification methods have been devel-
oped. Chen et al. [31] proposed a two-branch convolutional
neural network (CNN) model to separately extract the deep
features of HSI and LiDAR data for the fusion and classifica-
tion. They considered the information in the spatial neighbors
of a given pixel, while the spectral information of HSI is not
fully utilized in the CNN. Xu et al. [32] changed the HSI
branch CNN to a two-tunnel CNN framework extracting both
the spectral and spatial features on the basis of two-branch
CNNs model. Hang et al. [33] adopted a parameter-sharing
strategy and determined the classification accuracy of each
output through adaptive weights to assess the contribution of
different feature information for classification. Li et al. [34]
applied a three-branch CNNs model to extract spectral fea-
tures, spatial features, and elevation features and transformed
these features into a kernel space for HSI and LiDAR data
fusion.

The unsupervised methods have also been proposed.
Zhang et al. [35] proposed an unsupervised patch-to-patch
CNN (PToP CNN) to extract the features of HSI and LiDAR
data for classification. Hong et al. [36] designed a deep
encoder—decoder network architecture (EndNet) by enforcing
the fusion features of HSI and LiDAR data, which can
better activate the multimodel features in the case of insuf-
ficient labeled samples. Mohla et al. [37] presented a feature
fusion and extraction framework (FusAtNet), which extracted
modality-specific features and ensemble features through the
self-attention mechanism and cross-attention mechanism to
generate attention maps for HSI and LiDAR data classification.
Jia et al. [38] proposed a multiple feature-based superpixel-
level decision fusion (MFSuDF) from the perspective of the
impact of compression noise and achieved superior accuracy
for classification task.

Contrastive learning (CL) emerging in the field of natural
images has relatively low requirements for data annotation,
which can directly learn general feature representations from
unlabeled data with positive and negative samples constructed
by data augmentation methods. In this article, cross-modal
input consisting of HSI and LiDAR data is used as a pair of
positive samples without data augmentation, because different
RS data contain similar parts and heterogeneous parts for
the same ground object. Then, inspired by SimSiam frame-
work [39], we propose a collaborative CL (CCL) approach
for HSI and LiDAR data fusion and classification, which
includes the pretraining (CCL-PT) for collaborative feature
representation and matching and the fine-tuning (CCL-FT) for
multilevel fusion of the two-modal RS features.

The main contributions of this article are summarized as
follows.

1) First, in the CCL-PT stage, we introduce a collaborative
strategy into CL framework for the coordinated feature
learning and matching of HSI and LiDAR data without
labeled samples. More specifically, we design a novel
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CCL network based on ResNet to capture the dis-
criminative collaborative features from HSI and LiDAR
data separately with no shared weights. After that, the
collaborative features are projected into a shared abstract
space where the potential complementary information of
the two-modal RS data can be excavated deeply. Finally,
the feature matching is achieved by prediction pretext
task under the constraint of the similarity measure of
CL method.

2) Second, in the CCL-FT stage, we design a multi-
level fusion network to accurately construct a mapping
relationship and hierarchically fuse the collaborative
features of HSI and LiDAR data for classification.
In particular, we first fine-tune the collaborative features
with a small number of labeled samples to fully explore
the semantic correlations between the two-modal RS
data. Then, the two-modal features of different depths
are interacted and fused based on cross channel via the
multilevel fusion network instead of a simple concate-
nation strategy.

3) Third, our CCL approach reduces the reliance on data
augmentation and eliminates the need to construct addi-
tional negative samples in the CL-based methods. The
high robustness for training results is achieved with
a large number of unlabeled samples by unsupervised
CCL-PT. Extensive experiments on three real-world HSI
and LiDAR datasets demonstrate that the proposed CCL
approach is effective in solving the classification prob-
lems of single-source RS data and limited labeled sam-
ples and outperforms other state-of-the-art approaches,
such as FusAtNet and CoupledCNNs.

The rest of this article is organized as follows. Section II
provides a brief overview of related work on self-supervised
CL and CL-based methods for HSI classification. The pro-
posed CCL approach is presented with two stages of CCL-PT
and CCL-FT in Section III. The experimental description and
the result analysis on three real-world datasets are provided in
Section IV. Finally, Section V summarizes the conclusions of
this article.

II. RELATED WORKS
A. Self-Supervised CL

CL, a type of self-supervised learning without labeled
samples, usually refers to using the pretext task to discrimi-
nate positive samples and negative samples and automatically
extracts the features of samples for training models. The
core idea is to make the distance between positive samples
closer and the distance between negative samples farther in
the sample feature space. In general, the CL methods include
two stages: the pretraining stage and the fine-tuning stage. The
input data are used to construct positive samples and negative
samples as supervised information by data augmentation to
learn features in the pretraining stage, and the high-quality
feature extraction modules learned in the pretraining stage
are transferred to downstream tasks for fine-tuning. With the
development of CL, researchers have proposed many meaning-
ful CL-based methods mainly from two aspects of increasing
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the number of negative samples and constructing the diversity
of samples by different strategies of data augmentation.

The traditional CL-based methods generally store negative
samples in memory banks to increase the number of negative
samples, which has a disadvantage of inconsistency between
old and new encoders. To solve that problem, He et al. [40]
proposed a MoCo model that retained the memory banks,
but they used queues and momentum encoders to ensure the
consistency of the old and new encoders. Chen et al. [41]
replaced the memory bank by adding nonlinear layers and
enlarging batch size to increase the number of negative
samples in the proposed SimCLR model. Furthermore, they
experimented with a series of data augmentation strategies,
such as flipping, scaling, and so on, to explore which strategy
could extract high-quality features for representations in the
learning process. After that, the MoCo model was optimized
by adding a nonlinear layer to the network and improving the
data augmentation method based on the SimCLR model [42],
whereas the SimCLR model was modified via using a deeper
network and a memory bank referenced to [43].

Another disadvantage of CL methods is that it requires
many negative samples for contrast, which is time-consuming
and memory-consuming. To overcome this problem,
Caron et al. [44] proposed an SWAV model based on the prior
information of cluster centers instead of constructing negative
samples to distinguish the clusters of each classification.
Grill et al. [45] also proposed a BYOL model without
using negative samples for contrast, and they applied the
representation of a view to predict other views of the same
image. Moreover, in order to avoid the possibility of model
collapse due to the missing negative samples, the BYOL
model used a sliding average to update the parameters of
another branch after the gradient return of one branch.
Continuing the prediction idea of BYOL, Chen and He [39]
designed a simple Siamese network, named SimSiam,
to directly maximize the similarity of two views generated
by a picture without the need for negative samples, cluster
centers, and momentum encoders, and they found that stop
gradient was the key operation to avoid model collapse.

B. CL for HSI Classification

In recent years, self-supervised CL methods have been
applied to HSI classification. Hou et al. [46] proposed a two-
stage training strategy based on self-supervised CL to use
the information of a large number of unlabeled samples to
tackle the problem of insufficient labeled information in HSI.
Zhao et al. [47] also introduced a self-supervised method to
solve the HSI classification problem with only a few labeled
samples. These studies show that self-supervised CL methods
can learn effective feature representations of RS data and make
great achievements in the RS image domain. Therefore, other
researchers have conducted in-depth study on this method for
hyperspectral data.

One way is to use the valuable information in HSI to
construct various types of inputs for learning cross-domain
representations in CL. Lee and Kwon [48] proposed a cross-
domain CNN by using different HSIs with multiple spectral
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characteristics for learning representations, which can merge
different HSIs to learn rich multidimensional features for
classification. In order to make use of the semantic information
in the spectral and spatial domains of HSI, Guan and Lam [49]
developed an XDCL method to construct effective signals
for cross-domain contrast by utilizing the spectral and spatial
domains, respectively. Another way is to introduce new feature
extraction modules in the existing CL framework to improve
the effectiveness of the model. Zhu et al. [50] designed
a lightweight feature extraction network, including multiple
plug-and-play efficient asymmetric dilated convolution blocks,
which can reduce the high-computational cost and solve the
underutilization of pixel-level multiscale context information
for feature learning. To take full advantage of the multi-
scale semantic representation of images, Huang et al. [51]
added a 3-D-SwinT-based multiscale local CL module for
hierarchical learning, and their method can extract pixel-level
representations. In addition, some research works have inves-
tigated the possibility of combining deep subspace clustering
methods with CL. For example, Cai et al. [52] presented a
neighborhood contrastive subspace clustering network that can
greatly improve the consistency between positive samples in
the subspace, and it proved to be a scalable and robust method
for HSTI unsupervised classification.

C. Cross-Modal CL for HSI Classification

With the rapid development of CL methods, some
researchers have extended the idea of CL methods to process
the multimodal RS data, and the cross-modal CL methods may
have great potential in the application of HSI classification.
Hang et al. [53] designed a cross-modal contrastive loss to
explore the semantic and structural information between HSI
and LiDAR data, and they utilized a dual fine-tuning strategy
to transfer the features of small samples into the reused branch
of HSI for classification. Except for the abovementioned study,
we have not found any other studies of cross-modal CL-based
methods for the fusion of HSI and LiDAR data.

In this article, we also develop a cross-modal CL-based
approach for HSI and LiDAR data classification. However,
there are some differences between our work and the study
by Hang et al. as follows. First, the pretext task is dif-
ferent in the cross-modal CL-based method. The study by
Hang et al. is based on the contrast task of positive samples
and negative samples to directly maximize the attribution
relationship between representations of HSI and LiDAR data,
which ignores the local details. Our approach adopts the
prediction task to transform and match the two-modal features
and focuses on the local feature matching. Second, our method
removes the need for a large number of negative samples, since
the negative samples constructed from RS data with the high
similarity of spatial textures of adjacent regions may interfere
with the feature learning of positive samples. Meanwhile,
the collaborative strategy combined with stop-gradient oper-
ation is adopted to avoid model collapse by complementary
feature learning and adjusting network parameters between
HSI and LiDAR data. Third, our feature extraction module
is independent and works by collaboratively processing the
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information of HSI and LiDAR data, which can preserve
the intermodel and intramodal similarity structures. In [53],
the PCA technique was applied for the HSI dimensionality
reduction process to ensure the same dimension as the LiDAR
data, but the operation of PCA may lead to the loss of useful
information. At last, our fine-tuning strategy is different from
that of [53]. We design a cross-channel-based multilevel net-
work that can further fuse multimodal features and strengthen
the correlation of composite information between HSI and
LiDAR data, while the study by Hang et al. only focuses on
the potential information in hyperspectral data.

III. METHODOLOGY

In this section, our proposed CCL approach will be intro-
duced, which takes full advantage of CCL in the pretraining
(CCL-PT) stage and the fine-tuning (CCL-FT) stage for HSI
and LiDAR data fusion and classification. For the clarity
and readability, all the abbreviations of the CCL approach
are explained in the Nomenclature. The framework of CCL
method is shown in Fig. 1.

A. Pretraining for Collaborative Features

CL can learn some features of data without labeled samples,
which is beneficial to solve the classification problem of
insufficient labeled samples in the RS data. In this article, HSI
and LiDAR data covering the same area of the Earth’s surface
(the paired data) are used to directly construct positive sample
pairs as the training samples for feature learning in CL, instead
of the way of data augmentation. Then, a collaborative strategy
is introduced into CL for the two-modal RS data, which can
more effectively learn the features than the shared weights
in the feature extraction module. Specifically, CCL-PT maps
HSI and LiDAR data to different vector representation space
by independent feature extraction network to learn coordinated
representations and adopts the constraint of similarity measure
to collaborate the correlation of the two-modal RS data in the
CCL-PT stage. Therefore, the information of independence
and complementarity between the features of HSI and LiDAR
data can be coordinated in the feature space, and the learned
feature extraction module can be transferred for subsequent
multilevel fusion in the CCL-FT stage.

Here is a paired HSI X, € R”*W>B and LiDAR image
X; € RE*W where H and W represent the height and width
of the two images in the spatial dimension and B represents
the number of spectral bands of HSI. We perform CCL-PT
based on the prediction pretext task for the paired HSI and
LiDAR data (see Fig. 1). First, the positive sample pairs are
constructed based on the target pixels. Taking each target
pixel as the center, several adjacent pixels are selected to
form the HSI patch cube x;, € RP*P*8 and LiDAR patch
x; € RP*P respectively, where P represents the neighborhood
size. In our experiments, P is set to 9, which can retain
enough spatial context information of the data and reduce the
amount of calculation. Then, the constructed positive sample
pairs {(xg), xl(l))li = 1,2,3,..., T}, where i refers to the
selected patch according to the ith target pixel and T refers to
the number of training samples, are processed by two encoders
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Fig. 1. Flowchart of the proposed CCL method.

of the feature extraction module, a projector of the projection
module and a predictor of the prediction module. It is worth
noting that we use the collaborative strategy to make the
feature extraction module no longer share weights to better
learn the features of HSI and LiDAR data.

According to our previous experience, using complex net-
works to train HSI and LiDAR data easily leads to overfitting
due to the strong correlation between pixels of HSI. So, our
encoder adopts a relatively simple network structure to extract
discriminative features. The two encoders, denoted as fj
and f; for HSI and LiDAR data, have the same network
structure that consists of one convolutional layer, a stack
of N = 2 residual blocks, and one average pooling layer.
In detail, the inputs of HSI patch cube x;, and LiDAR patch
x; are first preprocessed by the convolutional layer to obtain
initial feature representations with the same dimensions. High-
quality features are extracted from initial feature representa-
tions in the residual blocks, and the redundant information
is removed through the average pooling layer to reduce the
amount of parameters. Each residual block consists of two
cascaded convolutions, and the number of channels is 64.
The cascaded convolutions use skip connections for identity
mapping and obtain nonlinear outputs by activation function
ReLU, which can effectively train network parameters via deep
gradient propagation to upper layers. The module structures
of projector and predictor are both composed of multilayer
perceptron (MLP), denoted as g and 4, respectively. The pro-
jector includes FC-BN-ReLU and FC-BN, and it recompresses
collaborative features into another potential feature space to
enhance the invariance of data transformation and learn higher-
order features. The predictor consists of FC-BN and FC, which
is adopted for feature matching of HSI and LiDAR data.
The final two output vectors are denoted as p, and z; and
represented as follows:

Py = h(g(fi(xn))) (1)
2 2 g(fi(xp). 2)

The loss function of CCL-PT is calculated by minimizing the
negative value of the cosine similarity and can be expressed
by the following equation:

) z
D(ph’zl) — p—l._l

Ilpillz lzill2

where |||, is the I,-norm and a distance metric function, which
is equivalent to the mean-squared error of the vector elements.

To balance the respective influences of two-modal RS data,
we define a symmetric loss for the patches generated by target
pixels of HSI and LiDAR data

3)

1 1
ED(p/17z1)+§D(pl’ Zh)~ 4

In addition, we also adopt stop-gradient operation to avoid
model collapse without negative samples and to efficiently
learn eigenfeatures of two-modal RS data in CCL-PT. When
features of HSI are used to predict LiDAR data features,
the gradient backpropagation is not executed on the network
branch of LiDAR data, and the output vector stopgrad (z;)
can be denoted as a constant C;. Similarly, when features
of LiDAR data predict HSI features, the network branch of
HSI does not perform gradient backpropagation either, and
the output vector stopgrad(z,) is denoted as a constant Cj,.
The formula for calculating the contrastive loss of each patch
is as (5). The total loss is the sum of the losses of all patches
generated by target pixels of HSI and LiDAR data in the
pretraining stage

Lc] =

1 1
Lstopgrad = ED(phv Cl) + ED(plv Ch) 5

B. Fine-Tuning for Multilevel Fusion

In the CCL-FT stage, we design a multilevel fusion network
structure and select a small proportion of labeled samples
(ten for each class) as the training set for supervised learn-
ing to perform multilevel concatenation and cross-channel
fusion on the existing unsupervised features extracted in the
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Fig. 2. Structure of the multilevel fusion network in the CCL-FT stage.

CCL-PT stage. CCL-FT can make full use of complementar-
ity information of ground objects contained in multiattribute
features of HSI and LiDAR data and combine those details
with information of labeled samples for final classification.
The network framework of multilevel fusion is denoted as fis
and shown in Fig. 2.

First, the feature extraction module learned in the CCL-PT
stage is transferred to the multilevel fusion network for feature
extraction of labeled samples in the CCL-FT stage. The
network branches of HSI and LiDAR data can learn four
features of different depths from the stack of N = 2 residual
blocks f, and f; in the transferred feature extraction module,
respectively, including two shallow features and two deep
features, which preserve independence and complementarity
of the two-modal RS data. Then, multilevel concatenation
is carried out to generate four new fused features based
on the abovementioned features. The formula of the new
concatenated feature is as follows:

) ( )

o) =a ®a’, j=12.3/4 (6)

where @ represents the concatenation along the channel axis
and j represents the feature learned from the jth depth.
Second, we fine-tune these new concatenated features based
on cross channel via the multilevel fusion network to deepen
the semantic correlation between new features. Therefore,
we insert three new convolution blocks Conv-BN-ReLu in
the fusion network on the basis of the feature extraction
module in the CCL-PT stage, which can change the dimension
of the concatenated features of HSI and LiDAR data to
adapt the number of channels of the following convolution
layers. The new convolution blocks are denoted as g and
shown in Fig. 3. The output vector ry can be expressed as
follows:
()

ri) = (m}(l{_])EBaf]{)), j=2,34 (7)

where @ represents the concatenation along the channel axis, j
represents the feature learned from the jth depth, and my, here
represents the features of different depths extracted by the
fusion network.

Specifically, the multilevel fusion process is realized via
a three-step cross-channel fusion, which can fuse and map

Conv block g
U-1 )
my, = Thi
j
An

t

Fig. 3. Structure of convolution block.

the collaborative features of HSI and LiDAR data to the
hidden feature space relevant to the classification task. First,
the new concatenated feature al(li) is used as the initial input of
the multilevel fusion network, and the feature representation
ml(]}) is obtained after the first depth convolution layer. Then,
in the three new convolution blocks, the feature representation
obtained by the previous depth convolution layer and the new
concatenated feature of the current depth convolution layer,
such as mﬁ}) and afj) in the second depth layer, are reduced
dimensionally and fused in the hidden feature space to obtain
the current depth feature representation, which is used for the
input of the next depth convolution layer. The output vectors
of different depth convolution layers in the multilevel fusion
network based on cross channel are expressed by the following

formula:
fmlf(ej,al(,{))a Jj=1

fur(65.7), 7 =2.3.4

where 6 refers to the parameters of convolution layer at
different depths in the multilevel fusion network.

In order to speed up the training process of the multilevel
fusion network, skip connections are applied to assist gradient
backpropagation. After the three-step cross-channel fusion, the
obtained feature representations are compressed through an
average pooling layer to integrate global information. Finally,
the integrated features of HSI and LiDAR data are output to
a fully connected layer for classification. The loss function of

) _
my =

®)
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TABLE I

NUMBER OF SAMPLES FOR TRAINING AND TEST OF EACH
CLASS ON THE TRENTO DATASET

Class No.  Categories | No. of Samples | Training Test
Cl1 Apple trees 4034 10 4024
Cc2 Buildings 2903 10 2893
C3 Ground 479 10 469
C4 Woods 9123 10 9113
C5 Vineyard 10501 10 10491
C6 Roads 3374 10 3364
Total 30414 60 30354

the classification process is as follows:

_ oo oGl
Fmie = 1°g<z,-e><p(ym)> ©)

where ¥ is the predicted value and y is the ground truth.

IV. EXPERIMENTS

A. Dataset Description

In this article, three widely used HSI and LiDAR datasets
are adopted to conduct a large number of experiments to
demonstrate the effectiveness and robustness of our proposed
CCL approach. The three datasets are described below.

1) Trento Data: The first dataset is collected in the area of
southern Trento, Italy. There are six land cover classes and
a total of 30414 labeled samples. The HSI data consist of
63 spectral bands ranging from 400 to 980 nm. Each band
is 600 x 166 pixels with a spatial resolution of 1.0 m [54].
Likewise, the LiDAR data have the same spatial size but only
one band. The detailed information is given in Table I and
Fig. 4.

2) Houston2013 Data: The second dataset is collected over
the University of Houston campus and its neighboring areas.
There are 15 land cover classes with a total of 15029 labeled
samples. The HSI data contain 144 spectral bands that range
from 380 to 1050 nm. Each band is 349 x 1905 pixels
with a spatial resolution of 2.5 m [55]. Similarly, the size
of corresponding LiDAR data is also 349 x 1905, including
the height information of the surface material. The details are
described in Table II and Fig. 5.

3) MUUFL Gulfport Data: The third dataset is collected
at the Gulf Park Campus of the University of Southern
Mississippi. There are 11 land cover classes and 53 687 labeled
samples. The original HSI data suffer from severe noise and
contain a region of invalid data. Therefore, eight spectral
bands are removed, and the original HSI is cropped in the
spatial extent as a new dataset. The new HSI data consist of
64 spectral bands ranging from 380 to 1080 nm. Each band is
325 x 220 pixels with a spatial resolution of 1.0 m [56], [57].
Meanwhile, the LiDAR data have the same spatial size and
resolution. The details are presented in Table III and Fig. 6.

B. Experimental Setup

To demonstrate the superiority of our proposed CCL
approach for classification of HSI and LiDAR data, we carry
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Fig. 4. Visualization of the Trento dataset. (a) Pseudo-color image of HSI.
(b) Gray-scale image of LiDAR data. (c) Ground-truth map. (d) Legend.

TABLE I

NUMBER OF SAMPLES FOR TRAINING AND TEST OF EACH
CLASS ON THE HOUSTON2013 DATASET

Class No. Categories No. of Samples | Training Test
Cl Health grass 1251 10 1241
C2 Stressed grass 1254 10 1244
C3 Synthetic grass 697 10 687
C4 Trees 1244 10 1234
C5 Soil 1242 10 1232
C6 Water 325 10 315
C7 Residential 1268 10 1258
C8 Commercial 1244 10 1234
C9 Road 1252 10 1242
C10 Highway 1227 10 1217
Cl11 Railway 1235 10 1225
C12 Parking lot 1 1233 10 1223
C13 Parking lot 2 469 10 459
Cl4 Tennis court 428 10 418
Cl15 Running track 660 10 650
Total 15029 150 14879

out a series of compared experiments, including two single-
modal models of CNN-HSI [58] and 3DVSCNN [59], three
state-of-the-art fusion networks of CoupledCNNs [33], End-
Net [36], and FusAtNet [37], and three models fused at
different times of Early-Fusion, Middle-Fusion, and Late-
Fusion. To ensure the fairness for all experiments, we use
the LiDAR images with the same band. So, the attribute
profiles are not applied to expand the number of bands of
LiDAR images in EndNet, Early-Fusion, Middle-Fusion, and
Late-Fusion models as described in the original papers. The
comparison methods are described below.

1) CNN-HSI: The 2-D convolution network was adopted
to jointly extract spectral and spatial features to avoid
information loss after the use of 3-D convolution and
PCA [58].
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Fig. 5. Visualization of the Houston2013 dataset. (a) Pseudo-color image of
HSI. (b) Gray-scale image of LiDAR data. (c) Ground-truth map. (d) Legend.

TABLE III

NUMBER OF SAMPLES FOR TRAINING AND TEST OF EACH
CLASS ON THE MUUFL GULFPORT DATASET

Class No. Categories No. of Samples | Training Test
Cl Trees 23246 10 23236
C2 Grass pure 4270 10 4260
C3 Grass groundsurface 6882 10 6872
C4 Dirt and sand 1826 10 1816
C5 Road Materials 6687 10 6677
C6 Water 466 10 456
C7 Building’s shadow 2233 10 2223
C8 Buildings 6240 10 6230
c9 Sidewalk 1385 10 1375
C10 Yellow curb 183 10 173
Cl1 Cloth panels 269 10 259

Total 53687 110 53577

2) 3DVSCNN: The 3-D convolutional network was
designed based on the idea of active learning to extract
spatial-spectral features for HSI classification [59].
CoupledCNNs: The coupled dual-branch CNN was
developed to fully integrate the heterogeneous features
of HSI and LiDAR data for classification [33].
EndNet: The deep encoder—decoder architecture was
applied to reconstruct the multimodal inputs and
fuse the multimodal features for HSI and LiDAR
classification [36].

FusAtNet: The LiDAR-derived attention map was used
to emphasize the spatial features of HSI, and the
spatial-spectral information was extracted for classifi-
cation task by the attention mechanism [37].
Early-Fusion, Middle-Fusion, and Late-Fusion: The
output multimodal features were concatenated and fused
at the different stage of the early, middle, and late stages
in the networks for classification [60].

3)

4)

5)

6)

We also investigate the contribution of four innovative
modules in our CCL approach to the classification accuracy,
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Fig. 6. Visualization of the MUUFL Gulfport dataset. (a) Pseudo-color image
of HSI. (b) Gray-scale image of LiDAR. (c¢) Ground-truth map. (d) Legend.

which includes Single-Encoder-HSI, Single-Encoder-LiDAR,
CCL-FT, and CCL-PT. Three ablation experiments are per-
formed on the real-world datasets, and the detailed description
is as follows.

1) Single-Encoder-HSI and Single-Encoder-LiDAR: The
single-modal encoder is adopted based on ResNet with
a shallow network depth to extract features of HSI
and LiDAR data, respectively. This experiment does not
include the modules of CCL-FT and CCL-PT.
CCL-FT: The modules of Single-Encoder-HSI and
Single-Encoder-LiDAR are used for feature extraction,
and our designed network of the cross-channel-based
multilevel fusion is added for fusion and classifica-
tion. This experiment does not include the module of
CCL-FT.

CCL: Our proposed CCL method includes two stages of
the CCL-PT and the CCL-FT, which is used to compare
with CCL-FT to evaluate the contribution of the CCL-PT
module.

2)

3)

The aim of this article is to address the problem of insuf-
ficient labeled samples for HSI and LiDAR data classifica-
tion. In the proposed CCL approach, 80% of the unlabeled
samples in each dataset are used for collaborative feature
extraction in the pretraining (CCL-PT) stage, and ten labeled
samples are randomly selected from each class as the training
set for multilevel fusion in the fine-tuning (CCL-FT) stage.
Specifically, there are 60, 150, and 110 labeled samples
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TABLE IV
CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS ON THE TRENTO DATASET. ALL THE BEST ACCURACIES ARE IN BOLD

Class No. CHH-HSI 3DVSCNN  CoupledCNNs EndNet FusAtNet Early-Fusion  Middle-Fusion  Late-Fusion CCL
Cl 95.79 80.14 98.49 60.35 97.09 98.75 99.28 99.28 99.49
Cc2 86.55 60.50 95.04 94.68 95.19 95.44 98.35 97.21 97.60

C3 97.18 69.59 95.48 86.31 90.49 94.07 95.88 91.66 97.53
C4 98.43 98.27 99.74 98.68 99.59 99.82 99.97 99.91 100.00

C5 96.78 87.63 99.91 85.05 99.06 99.28 99.45 99.54 99.77
C6 83.14 72.63 93.06 86.42 91.88 91.35 92.82 90.85 96.08
OA (%) 94.74 85.39 98.41 86.94 97.70 98.09 98.73 98.36 99.17
AA(%) 92.98 78.13 96.95 85.25 95.55 96.45 97.63 96.41 98.41
Kappa 0.9299 0.8064 0.9788 0.8255 96.9300 0.9746 0.9831 0.9781 0.9890

TABLE V

CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS ON THE HOUSTON2013 DATASET. ALL THE BEST ACCURACIES ARE IN BOLD
Class No. CNN-HSI  3DVSCNN  CoupledCNNs  EndNet  FusAtNet Early-Fuison  Middle-Fusion  Late-Fusion CCL
Cl 91.56 89.49 87.70 86.16 81.50 91.31 87.89 89.39 89.61
Cc2 92.53 86.98 92.11 89.08 81.25 93.14 90.68 90.01 90.13
C3 88.69 89.94 96.89 99.80 95.88 97.58 99.80 99.04 99.72
Cc4 94.10 91.41 97.74 92.03 92.02 94.64 96.56 94.95 98.68
C5 99.13 99.03 99.20 96.85 89.04 99.40 99.19 97.30 99.58
C6 89.51 86.32 91.14 87.24 75.59 85.40 86.67 84.41 92.03
Cc7 69.12 71.43 86.88 80.13 72.67 84.72 85.27 80.98 94.90
C8 55.54 57.36 73.87 70.62 65.43 70.40 73.63 74.16 88.06
Cc9 72.75 75.07 75.47 72.62 61.52 73.78 70.30 70.10 83.47
C10 80.52 70.66 82.70 64.24 59.33 71.03 70.85 71.69 90.54
Cl1 71.13 67.61 90.54 77.01 72.11 74.66 82.06 81.65 90.98
Cl12 64.06 70.26 79.34 66.65 68.14 79.99 77.60 72.04 83.65
Cl13 80.45 83.27 95.40 46.80 79.46 92.48 93.88 93.33 96.23
Cl4 97.41 90.74 99.67 97.37 96.94 98.30 99.19 97.56 98.78
Cl15 99.89 96.12 99.75 98.32 92.18 98.42 99.88 98.86 99.55
OA (%) 81.23 80.02 88.35 80.98 76.93 85.42 85.76 84.57 92.15
AA(%) 83.09 81.71 89.89 81.66 78.87 87.02 87.58 86.36 93.06
Kappa 0.7973 0.7841 0.8741 0.7944 0.7508 0.8423 0.8461 0.8332 0.9151

selected for Trento, Houston2013, and MUUFL Gulfport
datasets, respectively. With regard to parameter settings,
we refer to the SimSiam framework to set the CCL-PT
parameters. The stochastic gradient descent (SGD) is adopted
for pretraining, and the batch size is 512. An Adam optimizer
is employed for optimization in the CCL-FT stage. Three
common metrics of overall accuracy (OA), average accuracy
(AA), and Kappa coefficient are calculated to evaluate the
performance of different approaches for classification. More-
over, to avoid the influence of accidental factors, training
samples are randomly selected ten times from each dataset,
and the classification accuracy is obtained by the average of
ten experimental results. All experiments are implemented on
NVIDIA Tesla P100, 16-GB memory, and four GPUs.

C. Experimental Results and Analysis

1) Classification Results of Compared Methods: The clas-
sification accuracy of different methods is summarized in
Tables IV-VI, and the classification maps are shown in
Figs. 7-9. The detailed analysis of the compared results is
as follows.

a) Trento Dataset: Table IV shows the classification
results of different methods on the Trento dataset, and it
can be noticed that all methods achieve good classification
results, because the classes of ground objects in the Trento
dataset are highly different and discriminative, and whether it
is a single-modal method or a multimodal method that can
extract features containing rich information of ground objects.

The best classification result obtained by the single-modal
methods is CNN-HSI, and the accuracy can reach 94.74%.
Except for EndNet, the classification accuracy of the multi-
modal methods is above 97.7%, which is 2.96% higher than
that of CNN-HSI. This demonstrates that the complementary
information contained in multiattribute features contributes to
the improvement of the classification performance in most
cases. The reason why EndNet does not perform as well
as CNN-HSI on this dataset may be that EndNet cannot
adequately fuse the features reconstructed from HSI to LiDAR
data with few labeled samples. Overall, the classification
accuracy of our proposed CCL approach is higher than that
of all other methods, especially on Wood (class 4), which
can achieve a stable accuracy of 100%, and the OA, AA,
and Kappa coefficient of our model are 99.17%, 98.41%, and
0.989, respectively.

b) Houston2013 Dataset: Table V displays the clas-
sification results of different methods on the Houston2013
dataset. In general, as performed on the Trento dataset, the
classification accuracies of the methods with the multimodal
input are higher than those with the single-modal input on
the Houston2013 dataset, i.e., the OA and AA of 85.76% and
87.58% by Middle-Fusion and the corresponding accuracies
of 81.23% and 83.09% by CNN-HSI. Our proposed CCL
approach can learn the most discriminative features for almost
every class, with the accuracies varying from 83.47% for class
9 t0 99.58% for class 5. The OA, AA, and Kappa coefficient of
our method can achieve 92.15%, 93.06%, and 0.9151, which
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TABLE VI
CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS ON THE MUUFL GULFPORT DATASET. ALL THE BEST ACCURACIES ARE IN BOLD

Class No. CNN-HSI 3DVSCNN  CoupledCNNs  EndNet FusAtNet Early-Fuison = Middle-Fusion  Late-Fusion CCL

Cl 72.78 73.21 81.49 77.88 73.49 80.16 79.66 80.52 87.95
C2 80.98 62.20 68.44 70.67 54.00 64.23 64.24 64.77 74.25
Cc3 67.69 49.37 56.59 73.54 51.76 66.94 65.97 64.57 62.64
C4 71.26 71.62 89.10 75.39 65.12 73.40 80.62 73.06 90.41
(6] 75.99 62.79 78.61 88.04 83.80 82.92 83.31 78.32 80.09
(6} 96.74 85.42 100.00 99.23 98.25 94.45 99.82 99.65 100.00
Cc7 94.53 63.47 89.35 89.38 72.69 92.15 92.46 90.55 81.25
C8 73.75 61.85 87.89 88.15 85.39 86.33 88.29 83.16 85.33
C9 51.74 39.85 4741 54.78 39.39 47.69 49.80 45.59 47.92
C10 79.84 38.03 65.32 76.37 46.18 57.51 56.53 60.12 61.56
CI1 73.61 81.31 76.25 70.32 74.98 86.22 85.91 85.83 86.55
OA(%) 73.84 65.37 77.43 79.15 70.76 71.77 78.06 76.65 81.11
AA(%) 76.26 62.65 76.40 78.52 67.73 75.64 76.97 75.10 78.00
Kappa 0.6748 0.5685 0.7133 0.7366 0.6337 0.7168 0.7217 0.7027 0.7562

Fig. 7. Classification maps of different methods on the Trento dataset. (a) CNN-HSI (94.74%). (b) 3DVSCNN (85.39%). (c) CoupledCNNs (98.41%).
(d) EndNet (86.94%). (e) FusAtNet (97.70%). (f) Early-Fusion (98.09%). (g) Middle-Fusion (98.73%). (h) Late-Fusion (98.36%). (i) Single-Encoder-HSI
(96.93%). (j) Single-Encoder-LiDAR (93.00%). (k) CCL-FT (99.02%). (1) CCL (99.17%).

& i

Fig. 8. Classification maps of different methods on the Houston2013 dataset. (a) CNN-HSI (81.23%). (b) 3DVSCNN (80.02%). (c) CoupledCNNs (88.35%).
(d) EndNet (80.98%). (e) FusAtNet (76.93%). (f) Early-Fusion (85.42%). (g) Middle-Fusion (85.76%). (h) Late-Fusion (84.57%). (i) Single-Encoder-HSI
(85.66%). (j) Single-Encoder-LiDAR (50.97%). (k) CCL-FT (88.61%). (1) CCL (92.15%).

are improved by 3.80%, 3.17%, and 0.041 compared with 0.8741, respectively). Therefore, the multiattribute features
those of the typical and widely used method of CoupledCNNs extracted by CL can reduce the loss of information of HSI
(the OA, AA, and Kappa coefficient of 88.35%, 89.89%, and and LiDAR data, and the fused features by CCL contain richer
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Classification maps of different methods on the MUUFL Gulfport dataset. (a) CNN-HSI (73.84%). (b) 3DVSCNN (65.37%). (c) CoupledCNNs

(77.43%). (d) EndNet (79.15%). (e) FusAtNet (70.76%). (f) Early-Fusion (77.77%). (g) Middle-Fusion (78.06%). (h) Late-Fusion (76.65%). (i) Single-En-
coder-HST (77.83%). (j) Single-Encoder-LiDAR (56.27%). (k) CCL-FT (79.00%). (1) CCL (81.11%).

and more accurate details of ground objects than other fusion
results.

¢) MUUFL Gulfport Dataset: Table VI lists the clas-
sification accuracies of different methods on the MUUFL
Gulfport dataset. Due to the unbalanced distribution of sample
classes in the MUUFL Gulfport dataset, the methods used
for comparison in our experiments cannot well construct
the nonlinear distribution of ground objects in the multiat-
tribute feature space with limited labeled samples, resulting
in poor classification accuracies. However, our proposed CCL
approach can learn certain multiattribute features of nonlinear
transformations through an MLP in the pretraining stage, and
the multilevel fusion network can continuously optimize the
learned feature representations and map them to the sample
space effectively. The OA and Kappa coefficient of our method
are 81.11% and 0.7562, which are achieved by an improve-
ment of 1.96% and 0.0196 compared with EndNet. EndNet
can also learn more discriminative features, such as on the
mixed ground (class 3) and roads (class 5) in the MUUFL
Gulfport dataset, and has a relatively high AA of 78.52%.
In addition, from the results in Tables IV—VI, the classification
accuracies of Middle-Fusion on the three real-world datasets
are slightly higher than those of Early-Fusion and Late-Fusion.
For example, the OA and AA of Middle-Fusion are 78.06%
and 76.97% and the corresponding accuracies of 77.77% and
75.64% by Early-Fusion and 76.65% and 75.10% by Late-
Fusion on the MUUFL Gulfport dataset. It may be because the
features extracted by Early-Fusion tend to capture the spatial
texture information, and the features in the Late-Fusion are too
abstract in the case of insufficient labeled samples, while the
Middle-Fusion can better balance the heterogeneity between
features of HSI and LiDAR data.

Figs. 7-9 show the final classification results of different
methods on three datasets. Compared with the false-color
images of HSI, gray-scale images of LiDAR and ground-truth
maps in Figs. 4-6, we can clearly find that our proposed CCL
approach achieves better performance than the other methods,
and the classification maps obtained by CCL are the most
realistic. Taking the classification results of the Houston2013
dataset as an example, the methods, such as 3DVSCNN and
EndNet, have produced many abnormal classification results,
which do not correctly distinguish the boundaries of ground
objects due to the impact factors, such as noise. As a result, the
classification results are inconsistent with the real scenes. Our
CCL approach can handle details more robustly to classify
ground objects with the adaptive features learned in the
pretraining stage, and the classification map can present a
smoother visual effect.

2) Classification Results of Ablation Experiments: The clas-
sification accuracy of the ablation experiments is shown in
Table VII, and the result analysis is detailed as follows.

The comparison results between Single-Encoder-HSI and
Single-Encoder-LiDAR show that the Single-Encoder-HSI
method can achieve better classification performance, i.e., the
OA and AA of 96.93% and 94.77% on the Trento dataset
and the corresponding accuracies of 93.00% and 87.25%
by Single-Encoder-LiDAR, which indicates that rich spatial
and spectral features from HSI are more beneficial to the
classification of ground objects than the information from
LiDAR data. However, compared with CCL-FT and CCL
methods, the Single-Encoder-HSI method obtains a relatively
low accuracy. Taking the Houston2013 dataset as an example,
the OA of Single-Encoder-HSI is 85.66%, while the OAs
of CCL-FT and CCL are 88.61% and 92.15%, respectively.
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TABLE VII

ABLATION STUDIES ON DIFFERENT DATASETS. ALL THE
BEST ACCURACIES ARE IN BOLD

Trento

Class Single-Encoder  Single-Encoder CCL cCL

No. -HSI -LiDAR -FT
OA(%) 96.93 93.00 99.02 99.17
AA(%) 94.77 87.25 98.13 98.41
Kappa 0.9590 0.9066 0.9869  0.9890

Houston2013

Class Single-Encoder  Single-Encoder CCL cCL

No. -HSI -LiDAR -FT
OA(%) 85.66 50.97 88.61 92.15
AA(%) 87.51 53.17 90.00 93.06
Kappa 0.8449 0.4731 0.8769  0.9151

MUUFL Gulfport

Class Single-Encoder  Single-Encoder CCL cCL

No. -HSI -LiDAR -FT
OA(%) 77.83 56.27 79.00 81.11
AA(%) 7391 40.60 75.95 78.00
Kappa 0.7170 0.4368 0.7309  0.7562

The results demonstrate that the features of LiDAR data,
such as elevation, can be used as complementary information
of HSI to improve HSI classification accuracy after fusion.
CCL-FT has higher classification accuracies on the three
datasets than Single-Encoder-HSI and Single-Encoder-LiDAR,
i.e., the OAs of 79.00% and 56.27% of CCL-FT and Single-
Encoder-LiDAR on the MUUFL Gulfport dataset. This shows
that our multilevel fusion network based on cross channel can
fully fuse the features provided by HSI and LiDAR data and
reflect the effectiveness for classification tasks. After further
adding CCL-PT on the basis of CCL-FT, our CCL method
can learn more implicit and effective information of HSI and
LiDAR data and achieves the best classification performance,
especially on the Houseton2013 dataset with an improvement
of OA by 3.54%.

In addition, the results can also verify the effectiveness
of our designed feature extraction module by comparing the
accuracies between Single-Encoder-HSI in Table VII and
two single-modal methods of CHH-HSI and 3DVSCNN in
Tables IV-VI. The OAs of Single-Encoder-HSI are 96.93%,
85.66%, and 77.83% on the Trento, Houseton2013, and
MUUFL Gulfport datasets, and the corresponding accuracies
are 94.74%, 81.23%, and 73.84% of the CHH-HSI method
and 85.39%, 80.02%, and 65.37% of the 3DVSCNN method,
respectively.

3) Visualization Maps of Extracted Features From HSI:
We use ¢-distributed stochastic neighbor embedding (#-SNE) to
visualize the feature distribution and investigate the divisibility
between classes of ground objects by using the extracted
features before and after the collaborative pretraining from
HSI of the three datasets. Fig. 10 presents the feature
distribution in the 2-D space. Specifically, the features in
Fig. 10(a), (c), and (e) are generated by ¢-SNE from the orig-
inal HSI high-dimensional features before the collaborative
pretraining, while the features in Fig. 10(b), (d), and (f) are
produced by 7-SNE from features learned by the feature extrac-
tion module of the pretrained HSI branch. It can be clearly
seen that the feature distribution in Fig. 10(a), (c), and (e) is
more concentrated. However, the learned features after CCL in
Fig. 10(b), (d), and (f) can improve the similarity of samples
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Fig. 10. Feature visualization results of encoders for HSI on three real-world
datasets. On the Trento dataset (a) before pretraining and (b) after pretraining.
On the Houston2013 dataset (c) before pretraining and (d) after pretraining.
On the MUUFL Gulfport dataset (e) before pretraining and (f) after
pretraining.
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within a class and increase the difference of samples between
classes. The results illustrate that the proposed CCL approach
has a strong ability of feature extraction for HSI images,
and the extracted features with large differences are more
beneficial to downstream classification tasks.

V. CONCLUSION

In this article, our proposed CCL approach can efficiently
improve the classification accuracy of HSI and LiDAR data
under limited labeled samples. In the pretraining (CCL-PT)
stage, a collaborative strategy is introduced into CL to learn
discriminative features from two-modal RS data without
labeled samples. Then, we adopt the prediction pretext task to
match the learned features to improve the complementarity of
features and acquire the collaborative feature representations.
Finally, these collaborative features are fused based on cross
channel via our designed multilevel fusion network to obtain
the integrated multiattribute fusion features in the fine-tuning
(CCL-FT) stage. Also, a small number of labeled samples
are used for the supervised training to enhance the semantic
relevance of fusion features for classification. Extensive exper-
imental results and visualized classification maps consistently
demonstrate that our proposed CCL approach has excellent
performance on the fusion of HSI and LiDAR data and can
improve the classification accuracy on the three real-world
datasets, especially on the dataset of Houston2013.

REFERENCES

[1] B. Rasti et al., “Feature extraction for hyperspectral imagery: The
evolution from shallow to deep: Overview and toolbox,” IEEE Geosci.
Remote Sens. Mag., vol. 8, no. 4, pp. 60-88, Dec. 2020.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on October 16,2023 at 04:15:27 UTC from |IEEE Xplore. Restrictions apply.



JIA et al.: COLLABORATIVE CONTRASTIVE LEARNING FOR HYPERSPECTRAL AND LiDAR CLASSIFICATION

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

X. Kang, S. Li, and J. A. Benediktsson, “Spectral-spatial hyperspectral
image classification with edge-preserving filtering,” IEEE Trans. Geosci.
Remote Sens., vol. 52, no. 5, pp. 2666-2677, Jul. 2013.

S. Jia, S. Jiang, Z. Lin, N. Li, M. Xu, and S. Yu, “A survey: Deep
learning for hyperspectral image classification with few labeled sam-
ples,” Neurocomputing, vol. 448, pp. 179-204, Aug. 2021.

G. Licciardi, P. R. Marpu, J. Chanussot, and J. A. Benediktsson, “Linear
versus nonlinear PCA for the classification of hyperspectral data based
on the extended morphological profiles,” IEEE Geosci. Remote Sens.
Lett., vol. 9, no. 3, pp. 447-451, May 2012.

W. Li, S. Prasad, and J. E. Fowler, “Noise-adjusted subspace discrim-
inant analysis for hyperspectral imagery classification,” IEEE Geosci.
Remote Sens. Lett., vol. 10, no. 6, pp. 1374-1378, Nov. 2013.

S. Jia, Z. Lin, B. Deng, J. Zhu, and Q. Li, “Cascade superpixel
regularized Gabor feature fusion for hyperspectral image classification,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 5, pp. 1638-1652,
May 2020.

Z. Ye, J. E. Fowler, and L. Bai, “Spatial-spectral hyperspectral classifi-
cation using local binary patterns and Markov random fields,” J. Appl.
Remote Sens., vol. 11, no. 3, Jul. 2017, Art. no. 035002.

S. Jia et al., “A lightweight convolutional neural network for hyperspec-
tral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 59,
no. 5, pp. 4150-4163, May 2020.

L. He, J. Li, A. Plaza, and Y. Li, “Discriminative low-rank Gabor
filtering for spectral-spatial hyperspectral image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 55, no. 3, pp. 1381-1395, Mar. 2017.
S. Jia, S. Jiang, S. Zhang, M. Xu, and X. Jia, “Graph-in-graph
convolutional network for hyperspectral image classification,” IEEE
Trans. Neural Netw. Learn. Syst., early access, Jun. 20, 2022, doi:
10.1109/TNNLS.2022.3182715.

J. Zhou, W. Sun, X. Meng, G. Yang, K. Ren, and J. Peng, “Generalized
linear spectral mixing model for spatial-temporal-spectral fusion,” [EEE
Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5533216.

K. Ren, W. Sun, X. Meng, G. Yang, J. Peng, and J. Huang, “A locally
optimized model for hyperspectral and multispectral images fusion,”
IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1-15, 2021.

J. Zhang, X. Lin, and X. Ning, “SVM-based classification of segmented
airborne LiDAR point clouds in urban areas,” Remote Sens., vol. 5, no. 8,
pp. 3749-3775, Jul. 2013.

D. Hong, J. Hu, J. Yao, J. Chanussot, and X. X. Zhu, “Multimodal
remote sensing benchmark datasets for land cover classification with
a shared and specific feature learning model,” ISPRS J. Photogramm.
Remote Sens., vol. 178, pp. 68-80, Aug. 2021.

M. Dalponte, L. Bruzzone, and D. Gianelle, “Fusion of hyperspectral
and LiDAR remote sensing data for classification of complex forest
areas,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 5, pp. 1416-1427,
May 2008.

H. Ghassemian, “A review of remote sensing image fusion methods,”
Inf. Fusion, vol. 32, pp. 75-89, Nov. 2016.

W. Liao, R. Bellens, A. PiZurica, S. Gautama, and W. Philips, “Combin-
ing feature fusion and decision fusion for classification of hyperspectral
and LiDAR data,” in Proc. IEEE Geosci. Remote Sens. Symp., Jul. 2014,
pp. 1241-1244.

Q. Man, P. Dong, and H. Guo, “Pixel- and feature-level fusion of
hyperspectral and LiDAR data for urban land-use classification,” Int.
J. Remote Sens., vol. 36, no. 6, pp. 1618-1644, 2015.

C. Ge, Q. Du, W. Li, Y. Li, and W. Sun, “Hyperspectral and LiDAR data
classification using kernel collaborative representation based residual
fusion,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12,
no. 6, pp. 1963-1973, Jun. 2019.

L. Zhang and H. Shen, “Progress and future of remote sensing
data fusion,” Int. J. Remote Sens., vol. 20, no. 5, pp. 1050-1061,
2016.

M. Pedergnana, P. R. Marpu, M. D. Mura, J. A. Benediktsson, and
L. Bruzzone, “Classification of remote sensing optical and LiDAR data
using extended attribute profiles,” IEEE J. Sel. Topics Signal Process.,
vol. 6, no. 7, pp. 856-865, Nov. 2012.

M. He, W. Chang, and S. Mei, “Advance in feature mining from
hyperspectral remote sensing data,” Spacecraft Recovery Remote Sens.,
vol. 34, no. 1, pp. 1-12, 2013.

W. Liao, R. Bellens, A. Pizurica, S. Gautama, and W. Philips, “Graph-
based feature fusion of hyperspectral and LiDAR remote sensing data
using morphological features,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp., vol. 7, Jul. 2013, pp. 4942-4945.

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

5507714

M. Khodadadzadeh, J. Li, S. Prasad, and A. Plaza, “Fusion of hyperspec-
tral and LiDAR remote sensing data using multiple feature learning,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6,
pp. 2971-2983, Jun. 2015.

M. Zhang, P. Ghamisi, and W. Li, “Classification of hyperspectral and
LiDAR data using extinction profiles with feature fusion,” Remote Sens.
Lett., vol. 8, no. 10, pp. 957-966, 2017.

P. Ghamisi, J. A. Benediktsson, and S. Phinn, “Fusion of hyperspectral
and LiDAR data in classification of urban areas,” in Proc. IEEE Geosci.
Remote Sens. Symp., Jul. 2014, pp. 181-184.

B. Rasti, P. Ghamisi, and R. Gloaguen, “Hyperspectral and LiDAR
fusion using extinction profiles and total variation component analysis,”
IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 3997-4007,
Jul. 2017.

B. Rasti, P. Ghamisi, J. Plaza, and A. Plaza, “Fusion of hyperspectral
and LiDAR data using sparse and low-rank component analysis,” IEEE
Trans. Geosci. Remote Sens., vol. 55, no. 11, pp. 6354-6365, Nov. 2017.
F. Xiong, J. Zhou, S. Tao, J. Lu, and Y. Qian, “SNMF-Net: Learning
a deep alternating neural network for hyperspectral unmixing,” IEEE
Trans. Geosci. Remote Sens., vol. 60, pp. 1-16, 2021.

F. Xiong, J. Zhou, S. Tao, J. Lu, J. Zhou, and Y. Qian, “SMDS-Net:
Model guided spectral-spatial network for hyperspectral image denois-
ing,” IEEE Trans. Image Process., vol. 31, pp. 5469-5483, 2022.

Y. Chen, C. Li, P. Ghamisi, X. Jia, and Y. Gu, “Deep fusion of remote
sensing data for accurate classification,” IEEE Geosci. Remote Sens.
Lett., vol. 14, no. 8, pp. 1253-1257, Aug. 2017.

X. Xu, W. Li, Q. Ran, Q. Du, L. Gao, and B. Zhang, “Multisource
remote sensing data classification based on convolutional neural net-
work,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 937-949,
Feb. 2018.

R. Hang, Z. Li, P. Ghamisi, D. Hong, G. Xia, and Q. Liu, “Classification
of hyperspectral and LiDAR data using coupled CNNs,” IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 7, pp. 4939-4950, Jul. 2020.

H. Li, P. Ghamisi, U. Soergel, and X. X. Zhu, “Hyperspectral and LiDAR
fusion using deep three-stream convolutional neural networks,” Remote
Sens., vol. 10, no. 10, p. 1649, Oct. 2018.

M. Zhang, W. Li, Q. Du, L. Gao, and B. Zhang, “Feature extrac-
tion for classification of hyperspectral and LiDAR data using patch-
to-patch CNN,” [EEE Trans. Cybern., vol. 50, no. 1, pp. 100-111,
Jan. 2020.

D. Hong, L. Gao, R. Hang, B. Zhang, and J. Chanussot, “Deep
encoder—decoder networks for classification of hyperspectral and LiDAR
data,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1-5, 2020.

S. Mohla, S. Pande, B. Banerjee, and S. Chaudhuri, “FusAtNet: Dual
attention based spectrospatial multimodal fusion network for hyperspec-
tral and LiDAR classification,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. Workshops (CVPRW), Jun. 2020, pp. 92-93.

S. Jia et al.,, “Multiple feature-based superpixel-level decision fusion
for hyperspectral and LiDAR data classification,” IEEE Trans. Geosci.
Remote Sens., vol. 59, no. 2, pp. 1437-1452, Feb. 2020.

X. Chen and K. He, “Exploring simple Siamese representation learning,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2021, pp. 15750-15758.

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for
unsupervised visual representation learning,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 9729-9738.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in Proc. Int. Conf.
Mach. Learn., 2020, pp. 1597-1607.

X. Chen, H. Fan, R. Girshick, and K. He, “Improved baselines with
momentum contrastive learning,” 2020, arXiv:2003.04297.

T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. E. Hinton, “Big
self-supervised models are strong semi-supervised learners,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 22243-22255.

M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin,
“Unsupervised learning of visual features by contrasting cluster assign-
ments,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020,
pp. 9912-9924.

J.-B. Grill et al., “Bootstrap your own latent—A new approach to self-
supervised learning,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33,
2020, pp. 21271-21284.

S. Hou, H. Shi, X. Cao, X. Zhang, and L. Jiao, “Hyperspectral
imagery classification based on contrastive learning,” [EEE Trans.
Geosci. Remote Sens., vol. 60, pp. 1-13, 2021.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on October 16,2023 at 04:15:27 UTC from |IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1109/TNNLS.2022.3182715

5507714

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

L. Zhao, W. Luo, Q. Liao, S. Chen, and J. Wu, “Hyperspectral image
classification with contrastive self-supervised learning under limited
labeled samples,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1-5,
2022.

H. Lee and H. Kwon, “Self-supervised contrastive learning for cross-
domain hyperspectral image representation,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), May 2022, pp. 3239-3243.
P. Guan and E. Y. Lam, “Cross-domain contrastive learning for
hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2022, Art. no. 5528913.

M. Zhu, J. Fan, Q. Yang, and T. Chen, “SC-EADNet: A self-supervised
contrastive efficient asymmetric dilated network for hyperspectral image
classification,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5519517.

X. Huang, M. Dong, J. Li, and X. Guo, “A 3-D-Swin transformer-
based hierarchical contrastive learning method for hyperspectral image
classification,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5411415.

Y. Cai et al., “Superpixel contracted neighborhood contrastive subspace
clustering network for hyperspectral images,” IEEE Trans. Geosci.
Remote Sens., vol. 60, 2022, Art. no. 5530113.

R. Hang, X. Qian, and Q. Liu, “Cross-modality contrastive learning for
hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2022, Art. no. 5528913.

S. Jia, Z. Zhan, and M. Xu, “Shearlet-based structure-aware filtering for
hyperspectral and LiDAR data classification,” J. Remote Sens., vol. 2021,
Jan. 2021, Art. no. 9825415.

C. Debes et al., “Hyperspectral and LiDAR data fusion: Outcome of
the 2013 GRSS data fusion contest,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 7, no. 6, pp. 2405-2418, Jun. 2014.

P. Gader, A. Zare, R. Close, J. Aitken, and G. Tuell, “Muufl Gulfport
hyperspectral and LiDAR airborne data set,” Dept. Elect. Comput. Eng.,
Univ. Florida, Gainesville, FL, USA, Tech. Rep., 2013-570, 2013.

X. Du and A. Zare, “Technical report: Scene label ground truth map for
MUUEFL Gulfport data set,” Dept. Elect. Comput. Eng., Univ. Florida,
Gainesville, FL, USA, Tech. Rep., 20170417, 2017.

S. Yu, S. Jia, and C. Xu, “Convolutional neural networks for hyper-
spectral image classification,” Neurocomputing, vol. 219, pp. 88-98,
Jan. 2017.

L. Hu, X. Luo, and Y. Wei, “Hyperspectral image classification of
convolutional neural network combined with valuable samples,” J. Phys.,
Conf., vol. 1549, no. 5, Jun. 2020, Art. no. 052011.

D. Hong et al., “More diverse means better: Multimodal deep learn-
ing meets remote-sensing imagery classification,” IEEE Trans. Geosci.
Remote Sens., vol. 59, no. 5, pp. 43404354, Aug. 2020.

Sen Jia (Senior Member, IEEE) received the B.E.
and Ph.D. degrees from the College of Computer
Science, Zhejiang University, Hangzhou, China, in
2002 and 2007, respectively.

Since 2008, he has been with the College of
Computer Science and Software Engineering, Shen-
zhen University, Shenzhen, China, where he is cur-
rently a Full Professor. His research interests include
hyperspectral image processing, signal and image
processing, and machine learning.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

M, N
CONRYL

a=;
-

i

Xi Zhou received the B.E. degree from Jiangxi
Normal University, Nanchang, China, in 2021. She is
currently pursuing the master’s degree in computer
science and technology with the College of Com-
puter Science and Software Engineering, Shenzhen
University, Shenzhen, China.

Her research interests include hyperspectral and
light detection and ranging (LiDAR) classification
and deep learning.

Shuguo Jiang received the B.E. degree in
software engineering from the Xiamen University
of Technology, Xiamen, China, in 2020. He is
currently pursuing the master’s degree in software
engineering with the College of Computer Science
and Software Engineering, Shenzhen University,
Shenzhen, China.

His research interests include hyperspectral
image classification, machine learning, and pattern
recognition.

Ruyan He received the B.S. degree in geographic
information system from Liaoning Technical Univer-
sity, Fuxin, China, in 2012, and the Ph.D. degree in
photogrammetry and remote sensing from the China
University of Mining and Technology at Beijing,
Beijing, China, in 2019.

She was a Visiting Scholar with the University
of California (UC) at Davis, Davis, CA, USA,
from 2015 to 2017. She is currently an Associate
Research Fellow with the College of Computer
Science and Software Engineering, Shenzhen Uni-

versity, Shenzhen, China. Her research interests include remote sensing image
processing and deep learning.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on October 16,2023 at 04:15:27 UTC from |IEEE Xplore. Restrictions apply.



