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Abstract— The high spectral resolution of hyperspectral
images (HSIs) generally comes at the expense of low spatial
resolution, which hinders the application of HSIs. Fusing an HSI
and a multispectral image (MSI) from different sensors to get an
image with the high spatial and spectral resolution is an economic
and effective approach, but localized spatial and spectral changes
between images acquired at different time instants can have
negative impacts on the fusion results, which has rarely been
considered in many fusion methods. In this article, we propose
a novel group sparsity constrained fusion (GSFus) method to
fuse hyperspectral and MSIs based on matrix factorization.
Specifically, we imposed �2,1 norm on the residual term of the MSI
to account for the localized interimage changes occurring during
the acquisition of the hyperspectral and MSIs. Furthermore,
by exploiting the plug-and-play framework, we plugged a state-
of-the-art denoiser, namely block-matching and 3-D filtering
(BM3D), as the prior of the subspace coefficients. We refer to
the proposed fusion method as GSFus method. We performed
fusion experiments on two kinds of datasets, i.e., with and without
obvious localized changes between the HSIs and MSIs, and a
full resolution dataset. Extensive experiments in comparison with
seven state-of-the-art fusion methods suggest that the proposed
fusion method is more effective on fusing hyperspectral and MSIs
than the competitors.

Index Terms— Group sparsity, hyperspectral image (HSI),
image fusion, interimage changes, multispectral image (MSI).

I. INTRODUCTION

BY DIVIDING the electromagnetic wave into hundreds
of spectral channels and measuring the electromagnetic

energy scattered into the instantaneous field of view, hyper-
spectral cameras can produce hyperspectral images (HSIs)
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with hundreds of spectral bands [1], [2]. The main advan-
tage of HSIs over the traditional visible or multispectral
images (MSIs) is the high spectral resolution, which is con-
ducive to the precise recognition and identification of the
materials present in the images and promotes remarkable
applications in remote sensing, such as land cover classifi-
cation [3], spectral unmixing [4], [5], change detection [6],
and anomaly detection [7], [8].

The high spectral resolution of HSIs generally comes at
the expense of low spatial resolution [9]. Due to the narrow
bandwidth of the electromagnetic wave scattered into the
instantaneous field of view, the spatial resolution of HSIs has
to be lower so that more photons will be acquired. The low
spatial resolution hinders the further application of HSIs [10].
In contrast, MSIs usually have a much higher spatial resolution
and lower spectral resolution. In order to increase the spatial
resolution of HSIs to obtain images with high spatial and
spectral resolution at the same time, an economic and effective
approach is to fuse a low-spatial-resolution HSI (LR-HSI) and
a high-spatial-resolution MSI (HR-MSI) to produce a high-
spatial-resolution HSI (HR-HSI) [11].

Perfect materials for fusion will be images of the same
scene acquired at exactly the same conditions and at the
same time instant. As the development of remote sensing,
there emerge some platforms carrying both hyperspectral and
multispectral imaging sensors, but the number of this kind of
platforms is still limited [12]. On the contrary, optical satellites
(such as Landsat, Sentinel, and Quickbird) can provide a large
amount of high-resolution MSIs, which can be used to fuse
with HSIs acquired by different sensors. The relatively short
revisit cycles and the high spatial resolution of MSIs provide
a great potential to fuse with HSIs for practical applications,
such as the fusion of Landsat and moderate-resolution imaging
spectroradiometer (MODIS) data to generate HSI sequences
with a high temporal resolution [13], [14].

By fusing multiplatform hyperpsectral and MSIs, we can
get images with high spatial and spectral resolution. However,
multiplatform data fusion introduces further issues regard-
ing data calibration and the consistency of the images to
fuse [15]. In fact, crucial problems concern the different
points of view and the different acquisition time that can
be hardly compensated through the remotely sensed data-
processing chain. But most of the research studies facing
the problem of HSI fusion only include tests performed on
simulated data under certain ideal assumptions, ignoring the
described practical issues [12], [16], [17]. In particular, most
of the fusion methods work under an assumption that the
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observed images were acquired at almost the same observing
conditions, implying that the LR-HSI and the HR-MSI can be
viewed as spatially and spectrally downsampled versions of a
unique underlying HR-HSI, respectively, [18]. However, this
assumption is not always met in practical applications. It may
happen that the observed HSI and MSI were acquired at long
time intervals and different points of view. In this sense, the
LR-HSI and the HR-MSI cannot be simply viewed as spatially
and spectrally downsampled versions of a unique underlying
HR-HSI because localized spatial and spectral changes will
occur during the acquisition of the observed HSI and MSI.
Spectral changes (termed as spectral variability in [19]) is
an effect commonly observed in many scenes in which the
spectral signatures of the pure constituent materials vary across
the observed HSI. It can be caused under variable illumination
and atmospheric conditions, and can also be intrinsic to the
very definition of pure material, such as signatures of a
single vegetation species varying significantly due to different
growing and environmental conditions [19]–[21]. In addition,
localized land-cover changes may occur during the time
interval between the capture of the images. If not taken
into consideration, the localized spatial and spectral changes
between HSIs and MSIs can have a negative impact on the
fusion results.

Considering the existence of localized spatial and spectral
changes between the observed HSIs and MSIs, we propose a
novel group sparsity constrained method to fuse hyperspectral
and MSIs based on matrix factorization. In order to account-
ing for localized changes between the hyperspectral and
multispectra images, we characterize the spectral difference
between the observed LR-MSI and the underlying HR-HSI
by a group sparsity norm, �2,1 norm. To exploit the intrinsic
spatial information in the subspace coefficients and avoid cum-
bersomely designing a complex prior for subspace coefficients,
we propose the use of the plug-and-play technique, i.e., using
a plugged prior for the subspace coefficients. We plugged
the image prior of block-matching and 3-D filtering (BM3D),
which is a state-of-the-art denoiser, in the model to regularize
the subspace coefficients. We refer to the proposed hyperspec-
tral and MSIs fusion method as group sparsity constrained
fusion (GSFus) method. The main contributions of this article
are summarized as follows.

1) To fuse hyperspectral and MSIs, we proposed a novel
GSFus method, which can address localized changes
between the observed images by using a form of group
sparsity. Specifically, by imposing the �2,1 norm on
the residual term of the MSI to promote the group
sparsity, the proposed fusion method can account for the
localized changes occurring between the hyperspectral
and MSIs obtained from different sensors at long time
intervals.

2) The spectral low-rankness and spatial self-similarity
of the underlying HR-HSI are exploited by using a
subspace representation and plug-and-play technique,
respectively. To avoid cumbersomely designing a hand-
crafted regularizer for the subspace coefficients of the
underlying HR-HSI, we plugged the image prior from
BM3D, which is a state-of-the-art denoiser, in the model.

The plugged prior was proven to be effective in regular-
izing the subspace coefficients.

3) We performed fusion experiments on two kinds of
datasets, i.e., with and without obvious localized changes
between the observed HSIs and MSIs, and a full res-
olution dataset. Extensive experiments in comparison
with seven state-of-the-art fusion methods suggest that
the proposed fusion method is more effective on fusing
hyperspectral and MSIs.

We organized the remainder of this article as follows.
We first briefly introduce the related work of hyperspectral and
MSIs fusion in Section II. Then, we introduce our proposed
fusion method in detail in Section III. In Section IV, we show
and analyze the experimental results of the proposed method
and the competitors. Finally, we make a conclusion of this
article in Section V.

II. RELATED WORK

Fusion of an HSI and an MSI to reconstruct a high-spatial-
resolution HSI is an economic way and has attracted more
and more interest. The existing HSI and MSI fusion methods
can be approximately classified into matrix factorization-based
methods, tensor factorization-based methods, deep learning-
based methods, and pan-sharpening methods extended for
fusion of HSIs and MSIs.

Matrix factorization-based methods fuse the images by
decomposing the target HR-HSI into several matrices. Based
on the assumption that each spectral pixel can be sparsely
represented by the spectral basis and the correspond-
ing coefficients. Sparse representation-based methods fuse
the images by exploiting the sparsity of the coefficients.
Kawakami et al. [22] fused the images by estimating the
spectral basis from the LR-HSI and conducting sparse coding
for HR-MSI. Dong et al. [23] estimated the coefficients using
a structured sparse coding method. The unmixing-based fusion
methods first extract the endmembers as the spectral basis,
and then alternately update the endmembers via LR-HSI and
coefficients via HR-MSI by introducing different unmixing
priors to regularize the coefficients. Yokoya et al. [24] pro-
posed a coupled nonnegative matrix factorization (CNMF)
unmixing method, in which hyperspectral and multispectral
data are alternately decomposed into endmember and abun-
dance matrices based on a linear spectral mixture model.
Bendoumi et al. [25] proposed a fusion framework in which
the whole image is divided into several subimages and the
spectral-unmixing-based fusion algorithm is executed on the
subimages. Lanaras et al. [26] proposed a fusion method by
jointly unmixing two input images into pure reflectance spectra
and corresponding coefficients with a number of physical con-
straints. The subspace representation models obtain spectral
basis by performing singular value decomposition (SVD) or
vertex component analysis (VCA) on the LR-HSI, and then
estimate the coefficients by imposing different priors on the
coefficients, such as maximum a posteriori (MAP) [27], vector
total variation regularization [28], sparse representation-based
regularizer [29], and low tensor multirank (LTMR) regular-
ization [30]. Recently, Borsoi et al. [18] proposed a matrix
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Fig. 1. Flowchart of the proposed fusion method.

factorization-based fusion method accounting for spectral vari-
ability, leading to performance improvements in the presence
of spectral variability.

Tensor factorization-based methods are a kind of methods
that treat the images as a tensor to preserve the spatial and
spectral structure of the images rather than reshaping them
into matrices. In order to preserve the spatial and spectral
smoothness, Zhang et al. [31] proposed a low-rank Tucker
decomposition model in a combination of two graphs to
fuse HSI and MSI. By taking the HR-HSI as a 3-D ten-
sor, Li et al. [32] proposed solving the fusion problem by
estimating the core tensor and the dictionaries along three
modes. Kanatsoulis et al. [33] proposed a coupled tensor fac-
torization framework that guarantees the identifiability of the
super-resolution image under mild and realistic conditions.
Xu et al. [34] proposed a nonlocal tensor-based fusion model
based on t-SVD, which used a different tensor sparse represen-
tation model from [32]. By grouping the image into 4-D ten-
sors and introducing the tensor-train rank to regularize the 4-D
tensors, Dian et al. [35] proposed the low tensor-train rank
representation fusion method. Chang et al. [36] proposed an
image restoration method based on weighted low-rank tensor
decomposition. In this work, regularization parameters on the
core tensor were given based on the different singular values.
Bu et al. [37] proposed a novel graph Laplacian-guided cou-
pled tensor decomposition model for fusion of HSIs and MSIs.
He et al. [38] proposed a coupled tensor ring factorization
fusion model, which simultaneously learns the tensor ring
core tensors of the HR-HSI from a pair of HSI and MSI.
Borsoi et al. [39] proposed a coupled tensor approximation
fusion method accounting for both spatially and spectrally
localized changes.

Due to the powerful nonlinear learning capability, deep
learning has attracted great attention and has been successfully
utilized in many image processing applications. In terms of
deep-learning-based methods for fusion of HR-MSI and LR-
HSI, Palsson et al. [40] first proposed a 3-D convolutional
neural network (CNN) method to fuse HSIs and MSIs,
by learning the spatial decimation filter. Dian et al. [41]

incorporated the deep learning prior into the fusion frame-
work and fused the images by solving a Sylvester equa-
tion. Zhou et al. [42] proposed a pyramid fully CNN-based
method, which is composed of an encoder and a pyra-
mid fusion subnetworks. By formulating the fusion of HSI
with MSI as a nonlinear spectral mapping from an HSI to
MSI and clustering the spectral bands into several groups,
Han et al. [43] proposed the multibranch back propagation
(BP) neural network-based fusion method. To fully use the
information of HSIs and MSIs, Yang et al. [44] proposed a
novel two branches CNN method, which extracts the fea-
tures from the spectrum of each pixel in low-resolution HSI,
and its corresponding spatial neighborhood in MSIs, respec-
tively. Xue et al. [45] proposed a variational fusion network,
in which the degradation model and data prior are implicitly
represented by a deep learning network and jointly learned
from the training data.

Over the past two decades, a large number of pan-
sharpening techniques have been developed to enhance the
spatial resolution of MSIs, including component substitu-
tion -based methods [46], [47], multiresolution analysis-based
methods [48], [49], and sparse representation-based meth-
ods [50], [51]. As pan sharpening can be considered a
special case of the hyperspectral and multispectral fusion
problem, efforts have also been made toward generalizing
existing pan-sharpening methods for fusion of HSIs and
MSIs. One of the first attempts of pan-sharpening-based
hyperspectral and multispectral fusion was presented in [52]
using a wavelet technique. A successful solution consists in
assigning to each hyperspectral band, whose enhancement is
separately performed, a single channel of the multispectral data
[53], [54]. Instead of choosing a band, Chen et al. [55]
proposed a framework that solves the fusion problem by
dividing the spectrum of hyperspectral data into several
regions and fusing hyperspectral and multispectral images
in each region using conventional pan-sharpening techniques.
Selva et al. [56] proposed a framework, called hypersharpen-
ing, that utilizes a weighted combination of all the multispec-
tral bands for the spatial improvement of each hyperspectral
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band, achieving significantly better fusion results than simply
selecting a band from MSIs.

III. PROPOSED GSFUS METHOD

From Sections I and II, we can see that it is important
to incorporate the localized changes between the observed
HSIs and MSIs when we fuse the images from different
sensors. In addition, it is important to define a prior that
can fully make use of the spatial information embedded in
the subspace coefficients. Thus, in this article, we propose a
GSFus method to fuse the HSIs and MSIs based on matrix
factorization. In this method, we promoted the group sparsity
of the reconstruction error of the MSI term by minimizing
its �2,1 norm. Furthermore, by introducing the plug-and-play
framework, we plugged a state-of-the-art denoiser, i.e., BM3D,
as the prior to regularize subspace coefficients. The flowchart
of the proposed fusion method is illustrated in Fig. 1.

A. Observation Model

Let Yh ∈ R
w×h×L denote the LR-HSI observed by a

hyperspectral imaging sensor, and Ym ∈ R
W×H×l denote the

HR-MSI observed by a multispectral imaging sensor, where w,
h denote the number of rows, columns in LR-HSI, and l denote
the number bands in HR-MSI, respectively. Let Z ∈ R

W×H×L

denote the underlying HR-HSI of the observed LR-HSI scene,
where W , H , L denote the number of rows, columns and bands
in the HR-HSI, respectively. We have W > w, H > h, and
L > l. The three-dimensional HSI image can be reshaped
into a matrix by unfolding along the spectral mode. Here,
we use Z ∈ R

L×W H , Yh ∈ R
L×wh , Ym ∈ R

l×W H to denote the
unfolding of the HR-HSI, LR-HSI, and HR-MSI, respectively.

As we aim to fuse an HSI and an MSI of the same scene
from different sensors at different time instants, the LR-HSI
Yh acquired at its acquisition time can be represented as the
spatially downsampled version of HR-HSI, Z, as

Yh = ZBS+ Nh (1)

where B ∈ R
W H×W H is a blur kernel that encapsulates

the hyperspectral sensor’s spatial point-spread function (PSF)
describing the sensor’s spatial degradation process, and S ∈
R

W H×wh is the downsampling matrix, and Nh ∈ R
L×wh is

additive Gaussian noise. The blur kernel B can be decomposed
as

B = FKF−1 (2)

where F and F−1 denote the fast Fourier transform (FFT)
and the inverse FFT, respectively. The matrix K is a diagonal
matrix whose diagonal values are the eigenvalues of B.

The HR-MSI, Ym , is the spectral downsampled version of
Z and can be represented as

Ym = RZ+ Nm (3)

where R ∈ R
l×L is the spectral response function, and Nm ∈

R
l×W H . If there is no spectral variability [18] or interimage

changes [39] occurring between the acquisition of the observed
LR-HSI and HR-MSI, Nm represents additive Gaussian noise.
However, if there exists localized spatial and spectral changes

Fig. 2. Tensor representation of the observation model (3). The brown stars
mark the areas of changes, and Nm is the tensor form of Nm . ×3 denotes the
mode-n product of a tensor by a matrix.

Fig. 3. Illustration of group sparsity of Nm when image changes occur during
the acquisition of the LR-HSI and HR-MSI. The brown stars mark the areas
of changes, and Nm is the tensor form of Nm . The gray squares represent the
elements close to zero and the red squares represent the nonzero elements.

occurring between the acquisition of the observed LR-HSI and
HR-MSI, Nm accounts for not only additive Gaussian noise but
also interimage changes. The observation model (3) is depicted
in Fig. 2. In this scenario, Nm is a matrix with group sparsity
characteristics, as illustrated in Fig. 3.

B. Localized Spatial and Spectral Changes Between
Observed Images

The localized spatial and spectral changes (called interim-
age changes in [39]) between observed images are usually
caused by large acquisition time differences. It happens that
sometimes we have to fuse two images acquired at signifi-
cantly different times. Note that land-cover of Earth surface is
changing over time. This motivates us to develop more flexible
fusion models.

To illustrate the existence of localized spatial and spectral
changes between observed images, we use three pairs of
real hyperspectral and real MSIs, namely Paris data, Lake
Tahoe data, and Ivanpah Playa data, as examples (shown in
Fig. 4). A brief introduction of these data can be found in
Section IV. To see the interimage changes in each pair images,
we generated a difference image, Nm , by computing RZ−Ym ,
i.e., downsampling the HSI, Z, and then subtracting it from
the MSI, Ym . If no obvious interimage changes exist, then
Nm accounts for only Gaussian noise (which is pixel-wise
and band-wise independent). In this scenario, elements of a
matrix 1T

l Nm are also Gaussian distributed. Histogram plots
of 1T

l Nm for their images are given in the third column of
Fig. 4, where we can see that the histogram for Paris data
is approximately Gaussian, implying no obvious interimage
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Fig. 4. Illustration of the existence of localized spatial and spectral changes between observed images.

changes exist. On the other hand, the histograms for Lake
Tahoe and Ivanpah Playa data are non-Gaussian, meaning that
significant interimage changes exist in these two pairs. The
interimage changes may also be inferred in the final column
of Fig. 4, where displays power or energy of each pixel in the
difference image, Nm . We obtained signal power by computing
diag(NT

mNm),1 followed by reshaping the column vector into a
W×H matrix. As we can see from the final column of Fig. 4,
pixels of large values indicate significant changes between
HR-HSI and HR-MSI. The Paris scene exhibits very minor
changes because its images were acquired at the same time
instant [28]. The Lake Tahoe scene and Ivanpah Playa scene
show significant and localized changes, which is mainly due
to large acquisition time differences. The pair of Lake Tahoe
scenes were acquired on October 4, 2014, and October 24,
2017, and on October 26, 2015, and December 17, 2017,
respectively.

C. Estimation of Subspace

HSIs have a high correlation in the spectral domain, which
means that the spectral vectors live in low-dimensional mani-
folds or subspaces. As a result, the HR-HSI can be represented
by the subspace and its corresponding coefficients as shown
in Fig. 5, which can be written as

Z = DA (4)

where D ∈ R
L×k , A ∈ R

k×W H are the subspace and the
corresponding coefficients, respectively.

1Function diag(X) outputs a column vector of the main diagonal elements
of X.

Fig. 5. Subspace representation of the HR-HSI Z.

As LR-HSI can be regarded as the spatial downsampling
version of the HR-HSI, we can assume that the spectral
information that remained in the LR-HSI and HR-HSI is the
same, which means that the LR-HSI and HR-HSI share the
same subspace. Thus, we can estimate the subspace from
LR-HSI using subspace learning methods, i.e., SVD. The SVD
of LR-HSI can be expressed as

Yh = U�VT (5)

where U ∈ R
L×L and V ∈ R

W H×W H are semiunitary matrices,
and � ∈ R

L×W H are diagonal matrix which contains singular
values ranking by nonincreasing order. By discarding (L − k)
smallest singular values and keeping the k largest ones of
�, we can obtain �̂ = �(:, 1 : k). Then, a low-rank
approximation of Yh can be obtained as follows:

Ŷh = Û�̂V̂T (6)

where Û = U(:, 1 : k), V̂ = U(:, 1 : k). The subspace can be
obtained as

D = Û = U(:, 1 : k). (7)
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D. GSFus Model

The objective function of the proposed GSFus method is
written as

min
A

1

2
�Yh − DABS�2

F +
λ

2
�Ym − RDA�2,1 + βφ(A) (8)

where φ(·) is the regularizer defined to further enhance the
spatial correlation of subspace coefficients A, λ > 0 and β > 0
are parameters to regularize the group sparsity property of
(Ym − RDA) and the image prior of A. The mixed norm
�2,1 norm of X is defined as �X�2,1 = �n

i=1 �xi�2 (xi

represents i th column vector of X). The mixed norm promotes
column-wise sparsity of (Ym − RDA).

Note that in (8), we introduce the �2,1 norm on the residual
term of the MSI, which is quite different from existing fusion
methods [28], [30]. The use of �2,1 norm, instead of Frobenius
norm, promotes group sparsity and enables us to characterize
the spatial and spectral changes between observed MSI, Ym ,
and the underlying HR-HSI, DA. Because of the �2,1 norm,
the minimizer of (8) involves the promotion of group sparsity.
In this sense, the estimation of A at the positions of no changes
will be fitted using the information from both the LR-HSI
and HR-MSI. Whereas, the estimation of A at the positions
that changes take place will be determined by the fidelity
term of the LR-HSI and the regularization term on A, which
will help to achieve good reconstruction results. The �2,1

norm has been successfully used in image destripping methods
[57], [58] to promote group sparsity of matrices, represent-
ing image stripes, and also used to promote group sparsity
of anomaly matrices in anomaly detection tasks [7], [8].
To the best of our knowledge, this is the first time that �2,1

norm is used to address the hyperspectral and MSIs fusion
problems.

In addition, by exploiting the plug-and-play techniques,
we can use the a plugged prior as the implicit regularizer on
A, which means that we do not need to define the function
φ(·) explicitly. The plugged priors have been successfully
used in hyperspectral inverse problems to produce outstanding
results, e.g., compressive sensing [59], anomaly detection
[7], [8], image denoising [60], [61] and so on. Here, we used
state-of-the-art denoisers, BM3D [62], to regularize A. By
simultaneously making use of the sparsity and the nonlocal
self-similarity of images, BM3D can achieve satisfying denois-
ing performance while preserving the image details. The good
generalization ability and efficient implementation also make
it a preferred denoiser to be plugged.

We introduce two auxiliary variables, i.e., V1 and V2, and
convert (8) into a constrained optimization as

min
A,V1,V2

1

2
�Yh − DABS�2

F +
λ

2
�V1�2,1 + βφ(V2)

s.t. V1 = Ym − RDA, V2 = A. (9)

Then, we can easily transform the constraint prob-
lem into an optimization of the following augmented

Lagrangian function:
L(A, V1, V2, G1, G2)

= 1

2
�Yh − DABS�2

F +
λ

2
�V1�2,1

+βφ(V2)+ μ

2

����V1 − Ym + RDA+ G1

μ

����2

F

+μ

2

����V2 − A+ G2

μ

����2

F

(10)

where μ denotes the penalty parameter and G1, G2 are
the Lagrangian Multipliers. By referring to the alternative
method of multipliers (ADMMs), we can split (10) into several
subproblems and solve each subproblem alternatively.

1) Subproblem of A: Subproblem of A can be solved by
minimizing L(A, V1, V2, G1, G2) w.r.t. A as

A ∈ arg min
A

L(A, V1, V2, G1, G2)

= arg min
A

1

2
�Yh − DABS�2

F

+μ

2

����V1 − Ym + RDA+ G1

μ

����2

F

+μ

2

����V2 − A+ G2

μ

����2

F

. (11)

Since (11) is strongly convex, the solver of A can be
obtained by setting the derivative of (11) w.r.t. A to zero. Since
columns of D are orthogonal, it satisfies DT D = I. We can
finally acquire a Sylvester equation [63]

H1A+ AH2 = H3 (12)

where

H1 = μ(RD)T RD+ μI

H2 = (BS)(BS)T

H3 = DT Yh(BS)T + μ

�
V2 + G2

μ

�

−μ(RD)T

�
V1 − Ym + G1

μ

�
. (13)

Although (12) can be solved by referring to the conjugate
gradient method, in this article, we solved (12) analytically
and efficiently as done in [11] and [30].

2) Subproblem of V1: Subproblem of V1 can be solved by
minimizing L(A, V1, V2, G1, G2) w.r.t. V1 as

V1 ∈ arg min
V1

L(A, V1, V2, G1, G2)

= arg min
V1

λ

2
�V1�2,1 + μ

2

����V1 − Ym + RDA+ G1

μ

����2

F

(14)

which has a close-form solution by using the �2,1 norm
minimization operator [64]

V1 = shrink2,1

�
Ym − RDA− G1

μ
,

λ

2μ

�
(15)

where

shrink2,1(U, τ ) = [shrink(ui , τ ), i = 1, . . . , N]. (16)
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Fig. 6. Simulated Indian Pines data and Cuprite data used in the experiments. (a) Simulated Indian Pines data (Composed of bands 28, 19, and 10).
(b) Original spectra and replaced spectra of the selected region as marked in the green box in (a). (c) Cuprite data (Composed of bands 32, 19, and 10).

Here, shrink(u, τ ) is used to denote a vector-soft-threshold
operation and can be expressed as

u �→ max(�u� − τ, 0)

max(�u� − τ, 0)+ τ
u.

3) Subproblem of V2: Subproblem of V2 can be solved by
minimizing L(A, V1, V2, G1, G2) w.r.t. V2 as

V2 ∈ arg min
V2

L(A, V1, V2, G1, G2)

= arg min
V2

βφ(V2)+ μ

2

����V2 − A+ G2

μ

����2

F

. (17)

Based on the plug-and-play technique, the solution of the
problem (17) can be obtained by using denoising operator [65]
as

V2 ← Denoiser

�
A− G2

μ
,
β

μ

�
(18)

where Denoiser(·) is a plugged denoiser. By exploiting plug-
and-play technique, we can plug in an off-the-shelf denoiser,
such as BM3D [62], weighted nuclear norm minimization
(WNNM) [66], and CNN-based denoising methods [67]),
rather than making effort to design an effective regularizer.
In this article, we use the BM3D as the plugged denoiser
to solve the problem (18), as it is a fast and state-of-the-art
denoiser.

4) Updating of G1: We update G1 in each iteration as

G1 = G1 + μ(V1 − Ym + RDA). (19)

5) Updating of G2: We update G2 in each iteration as

G2 = G2 + μ(V2 − A). (20)

For better understanding, we summarized the steps for
optimizing the objective function (8) in Algorithm 1.

E. Computational Complexity

The computational complexity of the proposed algorithm
is given as follows. The computational complexity of esti-
mating the subspace D is O(w2h2 L). For each iteration,
the computational complexity of updating A via (12) is
O(W H ·max{log(W H ), k2}) [63]. Updating V1 and G1 costs
O(lkWH). The computational complexity of updating V2 is
O(kWH+kδ), where δ represents the computational complex-
ity of denoising an eigenimage. Updating G2 costs O(WHk).
The calculation of Z costs O(LkWH). Thus, the computational

Algorithm 1 Proposed GSFus Model
1: Input: Yh, Ym, λ, β, k
2: Estimate the subspace D via (7)
3: While not converge do
4: Update A via (12)
5: Update V1 via (15)
6: Update V2 via (18)
7: Update G1 via (19)
8: Update G2 via (20)
9: end while

10: Z = DA
11: Output Z

complexity of the whole proposed method is O(w2h2 L +
p(W H · max{log(W H ), k2} + kδ + LkWH)), where p is the
number of iterations. We performed experiments in MATLAB
(R2016a) on Windows 10 with an Intel Core i7-7700HQ
2.80-GHz processor and 24-GB RAM. The running times for
the experiments are presented in Tables III and IV.

IV. EXPERIMENTS

In this section, we present extensive experimental results to
assess the performance of the proposed method for fusing HSIs
and MSIs in comparison with seven state-of-the-art fusion
methods. The experimental results were assessed qualitatively
and quantitatively.

A. Experimental Datasets

We evaluated the fusion performance of the proposed fusion
method using five hyperspectral datasets. In order to fully
evaluate the proposed method, experiments were performed
on datasets without obvious changes between HSIs and MSIs,
as well as datasets that exhibit localized changes between
HSIs and MSIs. We give the detail of the datasets used as
follows.

1) The first dataset is the simulated Indian Pines dataset,
which was synthesized using the spatial structure of
the real Indian Pines image and spectral signatures
extracted from the United States Geological Survey
(USGS) digital spectral library [68]. The HR-HSI image
of size 144 (rows) × 144 (columns) × 224 (bands) is
shown in Fig. 6(a). We followed the Wald’s protocol [69]
to simulate the images. Specifically, the LR-HSI was
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generated by applying a Gaussian filter to the HR-HSI,
followed by a downsampling step with downsampling
ratio equal to 2. The Gaussian filter was designed
with its full-width at half-maximum (FWHM) equal to
the downsampling ratio, to match a plausible system
modulation transfer function (MTF) [12], [70], [71].
White Gaussian noise WGN) was added to the LR-HSI
to generate a noisy observed LR-HSI, yielding a signal-
to-noise ratio (SNR) equal to 30 dB. An HR-MSI with
ten bands was generated by computing RZ, where R is a
spectral response function of the Sentinel-2A instrument.
To simulate a noisy observed HR-MSI commonly seen
in real cases, WGN was added to the reference MSI
to obtain an observed HR-MSI with SNR equal to
40 dB [12], [28], [39]. Furthermore, we also generate an
observed HR-MSI with interimage changes as follows.

2) We selected a region of the HR-HSI as marked by the
green box in Fig. 6(a), and then replaced the original
spectra within the region with new spectra as shown in
Fig. 6(b).

3) The observed HR-MSI with ten bands was generated
by spectral downsampling the HR-HSI with replaced
spectra using the spectral response of the Sentinel-2A
instrument and then adding the WGN to generate a
40-dB SNR. Now, the Indian pine data has been used to
simulate a pair of images with interimage changes and
a pair of images without changes.

4) The second dataset is the Cuprite data captured by air-
borne visible infrared imaging spectrometer (AVIRIS) in
Nevada with a spatial resolution of 30 m [72]. The image
used for experiments has a size of 120 × 120 pixels and
196 bands. The HSI is shown in Fig. 6(c). The LR-HSI
was generated as the first dataset. WGN was added to
generate a noisy observed LR-HSI with a 30-dB SNR.
We generated the HR-MSI by implementing spectral
degradation of HR-HSI, i.e., RZ, where R is the spec-
tral response of the Sentinel-2A instrument. WGN was
added to a noisy observed HR-MSI, yielding a 40-dB
SNR.

5) The third dataset is a pair of real hyperspectral and real
MSIs acquired above Paris with a spatial resolution of
30 m [28]. The HSI was captured by the Hyperion and
the MSI was obtained by the Advanced Land Imager
instruments on board the Earth Observing-1 Mission
satellite. The hyperspectral and MSIs are shown in
Fig. 4. The reference HSI has a size of 72 × 72 pixels
and 128 spectral bands. The MSI has nine bands. The
LR-HSI was generated as the first dataset using the
reference HSI. Finally, WGN was added to generate
an observed LR-HSI with a 30-dB SNR. The observed
HR-MSI was obtained by adding WGN to the reference
MSI to obtain a 40-dB SNR. The spectral response
function was estimated as described in [18] and [28].

6) The fourth dataset is the Lake Tahoe data, which is
composed of an HSI and an MSI [18]. The HSI was
acquired by the AVIRIS instrument on October 4, 2014,
with a spatial resolution of 20 m. The MSI was captured
by the Sentinel-2A instrument on October 24, 2017 with

a spatial resolution of 20 m. The HSI has a size
of 100 × 80 pixels and contains 173 bands after pre-
processing while the MSI contains ten bands. We show
the HSI and MSI in Fig. 4. As acquired with a long
time interval, significant changes can be seen from the
two images. The spectral response function was obtained
from calibration measurements as a known prior [18].
The observed LR-HSI and the observed HR-MSI were
generated as the third dataset.

7) The fifth dataset is the Ivanpah Playa data, which is
composed of a hyperspectral image, acquired by the
AVIRIS instrument on October 26, 2015, and an MSI,
captured by the Sentinel-2A instrument on December
17, 2017 [18]. Both images have a spatial resolution
of 20 m with a size of 128 × 80. The HSI contains
173 bands after preprocessing while the MSI contains
ten bands. The HSI and MSI are shown in Fig. 4. The
spectral response function was obtained from calibration
measurements as a known prior [18]. As acquired with
a long time interval, significant changes can be seen
from the two images. The observed LR-HSI, observed
HR-MSI were generated as the third dataset.

8) The sixth dataset is a pair of hyperspectral and MSIs
at full resolution. The LR-HSI was captured by the
Hyperion sensor onboard the Earth Observing-1 satellite
and has a spatial resolution of 30 m and 220 spectral
bands within the spectral range of 400–2500 nm. After
removing the bands of low SNR, 87 bands were pre-
served. We used an area of 100 × 100 pixels for fusion
in this experiment. The HR-MSI was obtained by the
Sentinel-2A satellite and has 13 spectral bands. Four
bands of 10-m spatial resolution were kept for the fusion.
The spatial size of the HR-MSI is 300 × 300.

B. Compared Methods and Evaluation Indexes

1) Compared Methods: To evaluate the performance
of the proposed method, we compared the proposed
method with seven state-of-the-art fusion methods, includ-
ing matrix factorization-based methods, tensor factorization-
based methods, and an adapted hyperspectral pansharpening
method. Generalized Laplacian pyramid hypersharpening
(GLPHS) [12] is an adaptation of the generalized Laplacian
pyramid (GLP) method [49], which is an effective multireso-
lution analysis-based hyperspectral pansharpening method, for
the fusion of HSIs and MSIs. Among the matrix factorization-
based methods, we compared the CNMF method [24], vector
total variation regularization method, HySure [28], and LTMR
method [30]. Note that CNMF and HySure can also be used
to address the fusion of HSIs and panchromatic (PAN) images
directively. For tensor factorization-based methods, we consid-
ered the Super-resolution TEnsor-REcOnstruction (STEREO)
method [33], Super-resolution based on COupled Tucker Ten-
sor approximation (SCOTT) method [73], and Coupled Block
term decompositions for hyperspectral Super-resoluTion with
vARiability (CB-STAR) method [39], which also accounts for
both spatially and spectrally localized changes while fusing.
A MATLAB demo of the proposed GSFus method is available
on the page https://github.com/FxyPd.
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In GLPHS [12], hypersharpening [56] was used to adapt
the GLP method [49] to effectively fuse HSIs and MSIs.
Specifically, we assigned to each hyperspectral band a high
resolution synthesized image obtained by a linear regression
of MSI bands via least squares methods [12], [15], [56]. For
CNMF and Hysure, we set the dimension of endmember to
30 as in [12], and we fine-tuned the λφ in Hysure to achieve
the best fusion results. The subspace of LTMR was fixed to
eight for fair comparisons with the proposed method, and we
carefully tuned the regularization parameter λ. For STEREO,
SCOTT, and CB-STAR, the parameters were set to be the same
as in [39] for the Lake Tahoe data and the Ivanpah Playa data,
and we hand tuned these parameters carefully on the other
datasets. The other main parameters of the compared methods
were set according to their original articles and codes for better
fusion performances. For example, the λm in Hysure were set
to 1 [28]. The number of clusters K and the path size

√
q in

LTMR were set to 200 and 7 [30], respectively.
2) Evaluation Indexes: In the experiments, we compared

the experimental results of the proposed method with seven
state-of-the-art fusion methods qualitatively and quantitatively.
We used the following four indexes to thoroughly evaluate the
quality of fusion results.

The first index chosen is the peak SNR (PSNR) [74]. PSNR
of the i th band of an HSI is defined as

PSNR
�

Zi , �Zi

�
= 10 log10

⎛
⎜⎝ max(Zi )

2���Zi − �Zi

���2

F
/(W H )

⎞
⎟⎠ (21)

where Zi and �Zi denote the i th band of the true HR-HSI Z
and its reconstruction �Z , respectively. Higher PSNR means
better quality of the reconstruction.

The second index chosen is the spectral angle mapper
(SAM) [17]. SAM measures the averaged angle between the
pixel z j in the ground truth and the reconstructed pixel �z j

throughout the whole images. SAM is given in degrees and it
can be expressed as

SAM
�
Z, �Z�

= 1

W H

W H�
j=1

arcos
�zT

j z j

��z j�2�z j�2
. (22)

A smaller SAM is preferred as smaller SAM means less
spectral distortions.

The third index is the relative dimensionless global error in
synthesis (ERGAS) [29], which is defined as

ERGAS
�
Z, �Z�

= 100

d

����� 1

L

L�
i=1

MSE
�

Zi , �Zi

�
μ2

Ẑi

(23)

where d is the spatial downsampling factor, MSE(Zi , �Zi ) is the
mean square error between Zi and �Zi , μẐi

is the mean value
of �Zi . Smaller ERGAS means better reconstruction results.

The fourth index exploited is the universal image quality
index (UIQI) [75]. In this article, we compute the UIQI for
each band of HSI by first calculating UIQI within each sliding
32 × 32 window and averaging over all the windows in each
bands. Then, we obtained the UIQI for the whole HSI by

averaging the UIQI of each bands. The UIQI for the band Zi

and ̂Zi is denoted as

UIQI
�

Zi , �Zi

�
= 1

M

M�
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Zi

j Ẑ
i
j

σZi
j
σ

̂Zi
j

2μZi
j
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j

μ2
Zi

j
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Ẑi
j

2σZi
j
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σ 2
Zi

j
+ σ 2

Ẑi
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(24)

where M denotes the total number of windows, Zi
j and Ẑi

j
are the j th window in the i th band of the true HSI and
the reconstructed HSI, respectively. μZi

j
, σZi

j
are the mean

and standard deviation of Zi
j , respectively. σZi

j Ẑ
i
j

denotes the

covariance of Zi
j and Ẑi

j . The quality of the fusion results is
better if its UIQI value is higher.

C. Experiments on Datasets With Localized
Interimage Changes

In order to assess the fusion performance of the proposed
method on datasets with localized changes between hyper-
spectral and MSIs, in this section, we perform experiments
on three datasets that exhibit significant localized changes
between hyperspectral and MSIs, namely the Indian Pines data
with localized interimage changes, the Lake Tahoe data and
the Ivanpah Playa data.

We presented the mean PSNR (MPSNR), SAM, ERGAS,
and mean UIQI (MUIQI) of the recovered HSIs for the three
datasets in Table I, where the best results were highlighted
in bold. The running times are also presented in Table I.
From Table I, it can be clearly seen that for the three
datasets, the proposed method achieves considerable better
overall reconstruction performance than the competitors in
terms of the four evaluation indexes. The reason why the
proposed method achieved much better fusion performance
than the compared methods is that the proposed method
introduced the �2,1 norm to incorporate the interimage changes
between hyperspectral and MSIs. Although CB-STAR also
takes spatially and spectrally localized changes into consid-
eration, our proposed method outperforms it on all the three
datasets.

We presented the PSNR values of each restoration band
for the three datasets in Fig. 7. It can be clearly observed
from Fig. 7 that the PSNR values of the proposed method
are significantly higher than that of compared methods at
almost all the bands, which suggests that the proposed method
achieves the best fusion results for all the datasets when there
are localized changes between hyperspectral and MSIs.

For a visual comparison, the reconstructed images and
corresponding error images of the tenth band for Indian Pines
data with interimage changes are shown in Fig. 8. The error
images were obtained by calculating the absolute values of the
differencing images between ground truths and the estimated
images. From Fig. 8, we can see that the reconstruction perfor-
mance of the proposed method outperforms other competitors
obviously. For the Indian Pines data, interimage changes occur
in the area marked by the green box as shown in Fig. 6.
We can see that the error image of the proposed method
has fewer errors and is closer to the ground truth than other
methods, in particular in the area of interimage changes. For
the Lake Tahoe data, changes mainly occur at the crop circles
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TABLE I

QUANTITATIVE INDEXES OF THE PROPOSED METHOD AND COMPARED METHODS ON DATASETS WITH LOCALIZED CHANGES

TABLE II

QUANTITATIVE INDEXES OF THE PROPOSED METHOD AND COMPARED METHODS ON DATASETS WITHOUT LOCALIZED CHANGES

Fig. 7. Band-wise PSNR for three datasets. (a) Indian Pines with interimage changes. (b) Lake Tahoe. (c) Ivanpah Playa.

and around the lake, as shown in the last column of Fig. 4.
The reconstructed images and corresponding error images of
the tenth band of the Lake Tahoe data are shown in Fig. 9,
where we can see that the reconstructed image of the proposed
method looks closer to the ground truth. In terms of the error
images, the error image of GLPHS is noisy. Many residuals
remain in the error images of CNMF, HySure, STEREO,

SCOTT, and LTMR, in particular in the areas of changes,
as shown in the last row of Fig. 4. Fewer residuals left in the
error image of CB-STAR and the proposed GSFus method,
highlighting the importance of taking interimages changes
into consideration while fusing. For the Ivanpah Playa data,
changes mainly occur in the central part and lower left corner
of the images, as indicated in the last column of Fig. 4.
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Fig. 8. Tenth band of reconstructed images (first row) and the corresponding error images (second row) for Indian Pines with changes data.

Fig. 9. Tenth band of reconstructed images (first row) and the corresponding error images (second row) for Lake Tahoe data.

Fig. 10. 35th band of reconstructed images (first row) and the corresponding error images (second row) for Ivanpah Playa data.

We present the reconstructed image of the 35th band and
its corresponding error images for the Ivanpah Playa data in
Fig. 10. It is clear that the fusion result of the GLPHS is
dissatisfactory as there is much noise left in the reconstructed
image and error image. At the area where changes occur,
there are many residuals left in the error images of CNMF,

HySure, STEREO, SCOTT, and LTMR. The fusion results of
CB-STAR and proposed GSFus method are much better than
other methods. From the error images of CB-STAR and the
proposed method on three datasets, it can be seen that fewer
residuals left in the error images of the proposed method,
suggesting that the proposed method is more effective than
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Fig. 11. Spectral vector of a selected pixel and the corresponding reconstruction results in (a) Indian Pines data with interimage changes, (b) Lake Tahoe
data, and (c) Ivanpah Playa data.

Fig. 12. Band-wise PSNR for three datasets. (a) Indian Pines. (b) Cuprite. (c) Paris.

CB-STAR, which is also a fusion method accounting for
spatially and spectrally localized changes while fusing.

As the spectral signal is the most important information
carried by HSIs to identify materials, we compare the spectral
vectors of the reconstructed results in Fig. 11. As localized
interimage changes occur between the observed LR-HSI and
HR-MSI in these tested datasets, we can observe in Fig. 11 that
the spectral vectors recovered by the fusion methods deviate
significantly from the ground truth, except for CB-STAR and
GSFus. Thanks to the introduction of �2,1 norm to incorporate
the interimage changes in the proposed GSFus method, the
spectral vectors recovered by the proposed GSFus method are
more closer to the ground truth and can retain critical spectral
features than CB-STAR, which will be of great benefit to the
further applications of the HSIs.

Considering the observations above, it is clear that the
proposed method is effective in fusing hyperspectral and MSIs
with localized changes between them and performs better than
the other competitors on the three datasets overall.

D. Experiments on Datasets Without Obvious Localized
Interimage Changes

In this section, we perform experiments on the datasets with
no obvious localized changes between the hyperspectral and
MSIs, namely the Indian Pines data, the Cuprite data, and the
Paris data, to evaluate the fusion performance of the proposed
GSFus method in comparison with other methods.

We summarized the MPSNR, SAM, ERGAS, and MUIQI
of the recovered HSIs for the Indian Pines, Cuprite, and

Paris data in Table II. The running times are also presented
in Table II. For better visualization, we marked the best
results in bold. From Table II, we can see clearly that for
the Indian Pines data, the fusion results of the proposed
method are the best. STEREO, and LTMR get MPSNR values
very close to the proposed method. For the Cuprite data,
the performance LTMR is a little worse than the proposed
method. For the Paris data, all the method achieves comparable
results, and the proposed method is the best. In all, even on
the datasets without obvious localized changes, the proposed
method achieves the best overall reconstruction performance
in terms of the four evaluation indexes, which suggests that the
proposed method is a more flexible and robust fusion method.
GLPHS method is a multiresolution analysis-based pansharp-
ening method adapted for fusing HSI with MSI and is prone
to be affected by noise. CNMF is spectral unmixing-based
fusion method, thus it can obtain relatively good results under
the impact of Gaussian noise. However, it does not impose
any priors on the abundance, which, to some degree, limited
their fusion performance. STEREO, SCOTT, CB-STAR are
state-of-the-art tensor factorization-based methods. STEREO
and CB-STAR can obtain relatively good fusion results on
all the datasets, but SCOTT failed to achieve reasonable
results on Indian Pines and Cuprite data. HySure, LTMR, and
the proposed fusion method are subspace-based method. One
of the differences between the three methods is the priors
imposed to regularize the subspace coefficients. HySure and
LTMR use vector total variation and LTMR as the prior of
the subspace coefficients, respectively, whereas the proposed
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Fig. 13. 155th band of reconstructed images (first row) and the corresponding error images (second row) for Indian Pines data.

Fig. 14. 170th band of reconstructed images (first row) and the corresponding error images (second row) for Cuprite data.

Fig. 15. 120th band of reconstructed images (first row) and the corresponding error images (second row) for Paris data.

method implicitly regularizes the subspace coefficients using a
state-of-the-art denoiser, BM3D, which can achieve satisfying
denoising performance while preserving the image details. The
reason why the proposed method achieved the best overall
fusion results partly boils down to the implicit prior, i.e.,
BM3D, which denoises the subspace coefficients by fully
making use of the sparsity and the nonlocal self-similarity of
the subspace coefficients. In terms of the running time, from
Tables I and II, it can be seen that SCOTT takes the shortest
time to complete fusion on all the datasets. The proposed
method achieves the best performance at the cost of increased
computation time.

The PSNR values of each restoration band for simulated
Indian Pines data, Cuprite data, and the Paris data are depicted

in Fig. 12. It can be clearly seen from Fig. 12 that the PSNRs
of the proposed method are higher than that of compared meth-
ods at most of the bands, which suggests that the proposed
method achieved the best reconstructed fusion results for the
three datasets overall.

For a visual comparison, Figs. 13–15 display the recon-
structed images and corresponding error images of the 155th
band for Indian Pines data, the 170th band for Cuprite data,
and the 120th band for Paris data, respectively. It can be seen
that the reconstructed images of the proposed method are more
closer to the ground truths, and the residuals left in the error
images are fewer than the other methods. The reason that the
proposed method performs better than other subspace-based
methods, i.e., HySure and LTMR, can be attributed to the
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effective denoiser used as the prior of subspace coefficients
in the proposed method.

Taking all the above observations into consideration, it is
clear that the proposed method is not only effective in fusing
hyperspectral and MSIs with localized changes between them,
but also performs better than the other compared methods
when codes with the images without obvious localized change.
The reason is that the proposed method introduces the �2,1

norm to incorporate the interimage changes between hyper-
spectral and MSIs and uses an effective denoiser as the prior
of subspace coefficients, which make the proposed method a
more flexible and robust fusion method.

E. Ablation Study

To verify the effectiveness of the contributions involved in
the proposed GSFus model, we present a series of ablation
study by comparing the MPSNR of the recovered HSIs in
this section. First, we verify the effectiveness of the plugged
in prior as the regularizer on the subspace coefficients A by
setting the β to 0, such that the objective function will be
reduced to the following equation:

min
A

1

2
�Yh − DABS�2

F +
λ

2
�Ym − RDA�2,1. (25)

Second, to verify the effectiveness of the proposed �2,1

norm on the residual term of the MSI to account for the
localized changes occurring between the hyperspectral and
MSIs, we replaced the �2,1 norm on the reconstruction error
of the MSI of the objective function with Frobenius norm to
obtain as follows:

min
A

1

2
�Yh − DABS�2

F +
λ

2
�Ym − RDA�2

F + βφ(A). (26)

Then, we fused the HSIs and MSIs using (25) and (26),
respectively. The corresponding reconstruction MPSNRs are
given in Table III. Besides, we also listed the recovered
MPSNRs of the proposed GSFus model as a reference. The
best results are marked in bold for better visualization. From
the first row and the third row of Table III, we can clearly
see that the MPSNRs of (25) is significantly smaller than the
proposed GSFus method, which means that the plugged in
denoiser in the GSFus method is able to effectively regularize
the subspace coefficients, A, and can help to improve the
fusion performance. By comparing the second row and the
third row of Table III, we can observe that the proposed
GSFus method could always get the best MPSNRs on all the
datasets. Equation (26) could get comparable reconstructed
MPSNRs on images without obvious interimage changes. But
for images with significant interimage changes, the recon-
structed MPSNRs of (26) are significantly smaller than the
proposed GSFus. This is because the use of �2,1 norm in the
proposed GSFus method, instead of Frobenius norm, promotes
group sparsity and thus enables us to characterize the spatial
and spectral changes between observed MSI, Ym , and the
underlying HR-HSI, Z .

To further demonstrate the advantage of the proposed �2,1

norm regularization on the residual term of the MSI, we uti-
lized a state-of-the-art low-rank tensor decomposition, i.e.,
canonical polyadic decomposition (CPD), to model the HSI
and MSI degradation and then fused the degraded images
using the STEREO method and the corresponding modified
methods. According to [33], the HR-HSI, Z , can be repre-
sented as Z = [[I, J, K]], where I ∈ R

W×F , J ∈ R
H×F

and K ∈ R
L×F are called the low-rank latent factors of the

third-order tensor, respectively, and F is the tensor rank. The
objective function of STEREO is given as

min
I,J,K
�Yh − [[P1I, P2J, K]]�2

F + γ �Ym − [[I, J, PMK]]�2
F (27)

where P1 ∈ R
w×W , P2 ∈ R

h×H , and PM ∈ R
l×L are the

downsampling matrices along the width, height, and spectral
modes, respectively. γ > 0 is a preselected parameter that
weights the importance of each image in estimating I, J,
and K. To verify the effectiveness of the proposed �2,1 norm
to regularize the residual of the MSI image, we replace the
Frobenius norm with �2,1 norm on the residual term of the
MSI in (27) to form a new objective function as

min
I,J,K
�Yh − [[P1I, P2J, K]]�2

F+γ �Ym − [[I, J, PM K]]�2,1. (28)

Then, we fused the HSIs and MSIs using the STEREO
method, i.e., (27), and (28), respectively. The reconstructed
MPSNRs are presented in Table IV and the best results are
marked in bold for better visualization. It can be seen from
Table IV that (28) could achieve good fusion results on all the
images. STEREO obtains reconstructed MPSNRs very close
to (28) on images without obvious interimage changes. But for
images with significant interimage changes, the reconstructed
MPSNRs of STEREO are significantly smaller than (28). The
experimental results prove the superiority of using �2,1 norm
to regularize the residual term of the MSI.

F. Parameters Analysis

The proposed method includes three parameters, namely,
the dimension of subspace, k, and the tradeoff parameters,
λ and β. To assess the sensitivity of the proposed GSFus
method to the parameters, we performed experiments on all the
datasets with various settings of k, λ, and β. The reconstructed
MPSNRs of the proposed method as a function of k, λ, and
β are presented in Fig. 16. Fig. 16(a) presents the fusion
performance of the proposed method as a function of k.
It can be seen from the figure that the MPSNR values of
all the datasets are practically constant when the dimension
of subspace is greater than 8. It implies that the proposed
method is extremely robust to the overestimation of subspace
dimension. In this article, we fixed the dimension of subspace
to eight on all the datasets.

The parameters, λ and β, determine the intensity of the
group sparsity regularization on (Ym −RDA) and the implicit
regularization on A, respectively. These two parameters are
important to the fusion of hyperspectral and MSIs. Fig. 16(b)
presents the fusion performance of the proposed method with
the change of λ. Ideally, the determination of parameter λ
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Fig. 16. MPSNR of the proposed method with the changes of dimension of subspace k, λ, and β. (a) k. (b) λ. (c) β.

Fig. 17. Fusion results for full resolution dataset. The first row presents the fusion images composed of bands 20, 10, and 1. The second row shows the
enlarged area marked by red rectangle in the first row.

TABLE III

RECONSTRUCTED MPSNR VALUES OF (25), (26), AND THE PROPOSED GSFUS METHOD

TABLE IV

RECONSTRUCTED MPSNR VALUES OF STEREO METHOD AND (28)

should depend on the intensity of changes occurring between
the acquisition of HSI and MSI. However, it is not practical
to determine the intensity of changes in real situations. From
Fig. 16(b), we can see that the MPSNRs of the Indian
Pines and Cuprite data increase gradually when λ varies from
0.01 to 0.1, whereas the MPSNRs of the other dataset remain
relatively stable. By setting λ to 0.1, we could obtain good
results for all the datasets. Parameter β controls the inten-
sity of denoising the subspace coefficients. From Fig. 16(c),
we can see that except for Cuprite data, MPSNRs of the
other five datasets remain relatively stable when β varies from

0.003 to 0.01, whereas the MPSNR values of Cuprite data
show a little decrease. By setting β to 0.005, we can obtain
desired fusion results for all the datasets.

G. Experiment on Full Resolution Dataset

To further evaluate the effectiveness of the proposed
method, an experiment on full resolution data was carried out
using an HSI captured by the Hyperion sensor and an MSI
obtained by the Sentinel-2A satellite. The spectral response
function was estimated using the method in [28] and we simply
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adopted a 3 × 3 average kernel for the PSF. We show the
fusion results in Fig. 17. As shown in the figure, all the
methods can improve the spatial resolution of the Hyperion
LR-HSI to a different extent. The results of STEREO, SCOTT,
and CB-STAR look blurry compared with the others. There
are some artificial effects in the result of LTMR. GLPHS,
CNMF, HySure, and the proposed GSFus method can recover
more spatial details in the fusion results. The experiment on
full-resolution dataset demonstrates that the proposed GSFus
method can perform well in the fusion of full-resolution
dataset.

V. CONCLUSION

In this article, we proposed a novel GSFus method to
fuse hyperspectral and MSIs based on matrix factorization.
By imposing the �2,1 norm on the reconstruction error of
the MSI term to promote the group sparsity, the proposed
fusion method can account for the case in which localized
changes occur between the hyperspectral and multispectra
images obtained from different time or sensors. Meanwhile,
we propose to use a plugged in prior for the subspace
coefficients by exploiting the plug-and-play framework, which
allows us to insert a state-of-the-art denoiser, namely BM3D,
to regularize the subspace coefficients. Two kinds of dataset,
i.e., datasets with/without interimage changes, and a full
resolution dataset were used to evaluate the effectiveness
of the proposed method. We performed experiments on the
datasets by comparing the proposed fusion methods with
seven state-of-the-art competitors on the experimental datasets
according to four indexes, i.e., PSNR, SAM, ERGAS, and
UIQI, to evaluate the effectiveness of the proposed method.
Experimental results suggest that the proposed method is
effective on all the datasets and can obtain better fusion results
than the competitors.
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